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Preface

Lightwave technology developed over the last 40 years has greatly influenced our needs for communica-
tion. Resources made accessible in the World Wide Web (WWW) have changed our attitude towards
information acquisition, which is being regarded as an everyday’s necessity, and even as a natural right
for everybody.

This course concentrates — after a brief introduction to optical communications as such — on basic
communication concepts including a review of modulation formats, on optical transmitters including light
sources and modulators, and on optical receivers including photodiodes and electronic circuitry.

Emphasis is on physical understanding. A selection of topics is presented, on which the questioning
during the oral examination will be based. Especially the laser and photodiode sections, which have some
overlap with the course “Optoelectronic Components (OC / IPQ)” were included for completeness’ sake,
but will not be treated in full detail. The same is true for the Appendices “Linear and nonlinear fibre
properties”, “Sampling, quantizing and discrete Fourier transform”, and “Coherent signal and noise”. —
Some minimal background is required: Calculus, differential equations, linear systems, Fourier transform,
and pn-junction physics. For further reading, the following list provides some material. References on
more specialized topics are cited in the text.

Texbooks: Grau, G.; Freude, W.: Optische Nachrichtentechnik, 3. Ed. Berlin: Sprin-
ger-Verlag 1991. In German. Since 1997 out of print. Corrected reprint 2005, available in elec-
tronic form via W. F. (w.freude@kit.edu). Further material is found in: Agrawal, G. P.:
Fiber-optic communication systems. Chichester: John Wiley & Sons 1997 — Agrawal, G. P.:
Lightwave technology. Vol. 1: Components and devices. Vol. 2: Telecommunication systems. Hobo-
ken: John Wiley & Sons 2004 — H. Venghaus, N. Grote (Eds.): Fibre optic communication
— Key devices. Heidelberg: Springer-Verlag 2012 — Hecht, E.: Optics, 2. Ed. Reading: Addison-
Wesley 1974 — Hecht, J.: Understanding fiber optics, 4. Ed. Upper Saddle River: Prentice Hall 2002
— Iizuka, K.: Elements of photonics, Vol. I and II. New York: John Wiley & Sons 2002 — Jahns,
J.: Photonik. Grundlagen, Komponenten und Systeme. München: Oldenburg 2001. In German —
Leuthold, J.; Freude, W.: Optical OFDM and Nyquist multiplexing. In: Kaminow, I. P.;
Li, Tingye; Willner, A. E. (Eds.): Optical Fiber Telecommunications VI B. Systems and Networks, 6th
Ed. Elsevier (Imprint: Academic Press), Amsterdam 2013, Chapter 9, pp. 381–432 — Liu, M. M.-K.:
Principles and applications of optical communications. Chicago: McGraw-Hill 1996 — Singh,
J.: Physics of semiconductors and their heterostructures. New York: McGraw-Hill 1993. — Sze, S. M.:
Physics of semiconductor devices. New York: John Wiley & Sons 1985 — Voges, E.; Petermann,
K. (Eds.): Optische Kommunikationstechnik. Handbuch für Wissenschaft und Industrie (Handbook of
optical communications). Springer-Verlag, Berlin 2002, pp. 214–260. In German

There are other courses on Optical Communications, which cover the material either with a broader
view like “Optoelectronic Components (OC / IPQ)”, or in more detail like “Optical Waveguides and
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Directions

At first sight, these lecture notes might be scaring: When you browse through the material from the
beginning of Chapter 1 on Page 1 to the end of Chapter 5 on Page 175 you might perceive an overwhelming
mass of formulas, graphs and text. How can all these details on transmitters and receivers be taught and
understood during a single compact course? I think it is possible, if a few rules are observed:

• Scan the text for physical explanations which could help you developing a pictorial view of the
problem.

• Do try to understand the contents and the associated assumptions of important formulae in the
given physical context. Best is to put the meaning into words.

• Study the graphical display of major findings. Begin with the axis labels, read the caption, and look
carefully at the graph and its parameters.

• Do not start with deriving formulas, and do not learn them by heart (a few exceptions will be named
during the lecture). Deriving a relation may be delayed until you have some basic understanding
and become curious to learn more about the assumptions and implications. As long as you are
fighting with the physical interpretation of a relation, the mathematical details should be of no
concern for you, and you will not be questioned on them — it could be different if you aim at an
outstanding examination mark.

• Do not practice for the exam during the exam itself. The only proof to have understood the physics
is the ability to explain the topic to somebody else before you meet me in an examination. Best is
you work in groups.

During the lectures and especially during the tutorial, which to attend actively I do recommend strongly,
there will be time to answer your questions which may arise from studying the script. If you are then
able to explain the matter to fellow students, you are on firm grounds and are well prepared for the
examination.

The presentation and the examination will concentrate on the aforementioned points, while the lecture
notes (which will be made available to you during the examination) provide a more complete background
for your reference. If more information is to be found in the lecture notes than was presented during the
lectures, it is intended to make the notes self-consistent, but these additions may be safely skipped when
preparing for the examination.

You can also download the lecture slides which serve as a reminder of the actually presented material.
Many slides are hidden, so sometimes the slide numbers increment unevenly. Remember also that there
are right-pointing arrow-shaped links (mostly in the upper-right corner), which when clicking on them
carry you forward. The skipped pages were also omitted during the lectures, but are kept to satisfy your
curiosity (in case you have time for such a thing). Once more: The omitted material is not relevant for
the examination.

Studying the lecture notes on paper is fine, but because all cross-references are linked in the electronic
portable document format, it may be helpful to read the pdf-version in parallel on-screen. A click on
a link carries you immediately to the target1, and you can navigate at will. Acrobat Reader2 or Foxit
Reader3 allow you to search the document for text. You can mark and comment certain lines with an
electronic text marker, you can store your comments, and you can retrieve this information later on.

1On rare occasions, the target page for “floating” objects like figures or tables is wrong by one (e. g., you arrive on
Page 14 instead on Page 15), however, the page number printed in the originating text is always correct.

2http://www.adobe.de
3http://www.foxitsoftware.com/pdf/rd intro.php — A very lean application, no installation is required. Better refrain

from establishing Foxit as the default reader if you consider using Acrobat in parallel.



Chapter 1

Introduction

1.1 The nature of light

According to Maxwell1, light propagates as a wave having a wavelength λ. In vacuum, the speed of light
is c = 2.997 924 58× 108 m / s. However, Planck2 found that the energy of light radiated from a hot black
body is emitted in quanta, the energy of which is in proportion to the observed frequency f = c/λ, so that
each quantum or “photon” has an energy W = hf = ~ω; Planck’s constant is h = 6.626 075 5× 10−34 Ws
with ~ = h/ (2π), and the angular frequency is ω = 2πf . Further, it was shown by de Broglie3 that each
particle having momentum p may be associated with a wavelength λ = h/p. This statement can be also
reverted: Each wave with wavelength λ has a mechanical momentum p = h/λ (in vacuum: p = ~k0 with
free-space propagation constant k0 = 2π/λ = ω/ c). Obviously, the nature of light is ambiguous. Einstein4

formulated5: “Light is like the French philosopher Voltaire6. Voltaire was born catholic, converted as a
young man to Protestantism, and returned to Catholicism shortly before his death.” Therefore Einstein
concludes: “Light is born as a particle, lives as a wave, and dies as a photon when being absorbed.”

1.2 Communication with light

An optical communication system uses lightwaves in a vacuum wavelength range 0.6µm . . . 1.2µm ≤
λ ≤ 1.6µm corresponding to carrier frequencies f = c/λ of 500 THz . . . 250 THz ≥ f ≥ 190 THz. A
communication system is referred to as a point-to-point transmission link. When many transmission links
are interconnected with multiplexing or switching functions, they are called a communication network.
The principle of an optical transmission link is shown in Fig. 1.1.

A semiconductor device (laser d iode LD, l ight-emitting d iode LED) emitting light near a wavelength
λ is excited by an electric current, thereby converting the electrical signal information to light. This
subsystem represents a simple transmitter (Tx). The signal can be transmitted simply as an analogue or
a digital modulation of the light power P (t) (unit W) or intensity I(t) = P (t)/F (unit W /m2, power P

1James Clerk Maxwell, mathematician and physicist, ?Edinburgh 13.6.1831, †Cambridge 5.11.1879. Professor in Cam-
bridge, UK

2Max Planck, physicist, ?Kiel 23.4.1858, †Göttingen 4.10.1947. Professor in Kiel and Berlin. Nobel prize in physics 1918
3Louis Victor, 7. Duke of Broglie (since 1960), named Louis de Broglie (the family name is pronounced [d@"bKOj], but

the town Broglie is prounounced ["bKOgli]), physicist, ?Dieppe 15.8.1892, †Louveciennes (Département Yvelines) 19.3.1987.
Nobel prize in physics 1929 (together with O. W. Richardson)

4Albert Einstein, physicist, ?Ulm 14.3.1879, †Princeton (NJ) 18.4.1955. “Technical expert 3rd class” at the patent
office in Bern (1902–09). Professor at the University of Zurich and Prague (1911/12) and at the Swiss Federal Institute of
Technology (ETH) in Zurich. Emigration to the USA in 1933. Professor at the Institute for Advanced Study in Princeton
(NJ). American citizen since 1940. Formulated in 1905 (1914–16) the special (general) theory of relativity. Nobel prize in
physics 1921

5Jahns, J.: Photonik. Grundlagen, Komponenten und Systeme. München: Oldenbourg-Verlag 2001. Page 9
6Pseudonym or pen-name of François Marie Arouet, philosopher and writer, ?Paris 21.11.1694, †Paris 30.5.1778

1
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Fig. 1.1. Optical point-to-point transmission link with an intensity-modulated carrier centered at a wavelength λ and direct
(incoherent) detection

per area F ) as a function of time t. The classical power results from an average over a few optical cycles.
More advanced modulation formats will be introduced at a later point of time.

The light is transported through a dielectric l ight waveguide (LWG), consisting of a low-refractive
index cladding and a high-index core, which confines and guides the light in a cross-sectional area F .
For long-distance communication, optical quartz glass fibres are used. Glass-based fibre waveguides are
very thin, immune to electromagnetic interference, have low loss and guide the light over thousands of
kilometers. In special cases, also free-space optical communication may be considered, for instance between
a satellite and an Earth terminal. The dielectric waveguide or simply air represent the transmission
channel, which we understand as “the medium used to transmit the signal from transmitter to receiver”,
following the definition by Shannon7 in his seminal paper8.

At the end of the channel, a receiver (Rx) evaluates the transmitted signal. In the simplest form of a
Rx, a photodetector (PD) with cross-section F and sensitivity S (unit A /W, also named responsivity)
reconverts light with power P = FI and photon energy hf to an electrical photocurrent i,

i(t) = SP (t), S =
ηe

hf
,

S

A /W
= η

λ/µm

1.24
= 0.806× η

λ

µm
,

i

e
= η

P

hf
. (1.1)

The relation can be physically interpreted by observing that i/ e is the rate (unit: 1/ s) of photo-generated
electrons, and P/ (hf) the rate (unit: 1/ s) of incident photons. Equation (1.1) then tells us that the
number of electrons generated per time equals the number of incident photons per time reduced by the
factor of the quantum efficiency η ≤ 1, because on average a photon produces an electron only with
probability η. The more the wavelength increases, i. e., the smaller the photon energy is, the larger the
sensitivity S (and the photocurrent i) becomes9, because for a constant optical power P more photons
are available for generating electrons.

This very straightforward type of reception in Fig. 1.1 is called “direct” or incoherent, as opposed
to coherent reception, where so-called heterodyne, intradyne or homodyne mixing with a local laser
oscillator (LO) is employed.

1.2.1 Modulation

For encoding the signal information, the transmitted light must be altered (“modulated”) in some way.
The physical quantity to be modulated could be the frequency (as in f requency modulation or FM
broadcast), the phase, the electric field amplitude (as in amplitude modulation or AM broadcast), the
polarization of the optical field, or, most simply, the optical intensity I (intensity modulation IM) as
depicted in Fig. 1.1. There are two major methods of modulation — analogue and digital.

Analogue modulation, Fig.1.2(a), uses less bandwidth and is simpler than digital modulation, which
however provides a better signal quality at the expense of larger bandwidth requirements and a more

7Claude Elwood Shannon, engineer and physicist, ?Gaylord (Michigan) 30.4.1916, †Medford (Massachusetts) 24.2.2001.
Seminal papers on information theory in 1948. Professor at Massachusetts Institute of Technology since 1956

8C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423, 623–656
9For hf = 1 eV (f = 242 THz, λ = 1.24µm) and a quantum efficiency η = 1 the sensitivity amounts to S = 1 A /W.
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(a) Analogue intensity modulation (b) Digital intensity modulation with TDM

Fig. 1.2. Modulation formats (a) Analogue intensity modulation around an operating point Iavg (b) Digital intensity
modulation between an off (I0) and an on value (I1). For a 4-channel t ime d ivision multiplexing scheme (TDM) individual
transmission time slots 1 . . . 4 are assigned to each data source

complicated circuitry. Present-day communications are controlled and initiated by digital computers, so
it is natural to use a digital modulation format for transmission.

However, due to the strong increase of Internet traffic, bandwidth limitations of the transmitting fibre
have become important. Therefore more advanced modulation schemes were developed, where both am-
plitude and phase of the optical field are modulated such that they take a number of discrete levels. This
type of modulation has been named quadrature amplitude modulation (QAM). Because the transmitted
symbols are not just binary, more information per symbol can be transmitted without additional band-
width requirements. As a disadvantage, the signal quality must be significantly better for an error-free
discrimination between the various amplitude and phase levels.

The most common digital modulation format is pulse code modulation (PCM). Here, the value of an
analogue signal v(t) is sampled, and the values are then converted into a binary code. If the signal has
a maximum bandwidth B (unit Hz) then sampling the analogue signal at equidistant time increments
1/(2B) with the so-called Nyquist10 sampling rate 2B allows an exact reconstruction of the analogue
signal from its samples, if these samples are properly interpolated. This is known as Nyquist-Shannon’s
sampling theorem11,12,13,14.

The sampled values (e. g., the numbers 1, 4, 2, 5, 9 . . .) are then converted into a form suitable for trans-
mission. For a binary format only two states are physically discriminated, light “off” or I0 in Fig. 1.2(b)
corresponding to a logical “0”, and light “on” or I1 corresponding to a logical “1”. The decimal numbers
1, 4, 2, 5, 9 would first be converted into binary numbers 0001, 0100, 0010, 1001, and then transmitted
as temporal sequences (I1, I0, I0, I0), (I0, I0, I1, I0), (I0, I1, I0, I0), (I1, I0, I0, I1) of low and high optical
intensities by switching the control current of the laser diode in Fig. 1.1 on and off. After transmission,
an optical receiver converts the light impulses back into an electrical signal of low (i0) and high currents
(i1). Finally, a digital-to-analogue converter reconstructs the original signal v(t).

10Harry Nyquist (correct Swedish pronounciation is ["nYkvIst], not ["naIkwIst]), physicist and electrical and communications
engineer, ?Nilsby (Sweden) 7.2.1889, †Harlingen (Texas) 4.4.1976, a prolific inventor who made fundamental theoretical
and practical contributions to telecommunications. — Nyquist moved to the United States in 1907. He earned a B. S. (1914)
and an M. S. (1915) in electrical engineering from the University of North Dakota. In 1917, after earning a Ph. D. in physics
from Yale University, he joined the American Telephone and Telegraph Company (AT&T). There he remained until his
retirement in 1954, working in the research department and then (from 1934) at Bell Laboratories. Nyquist continued to
serve as a government consultant on military communications well after his retirement.

His 1928 paper “Certain topics in telegraph transmission theory” refined his earlier results and established the principles
of sampling continuous signals to convert them to digital signals. The Nyquist sampling theorem showed that the sampling
rate must be at least twice the highest frequency present in the signal in order to reconstruct the original signal.

11H. Nyquist: Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3 (1924) 324–346
12H. Nyquist: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electrical Engineers 47 (1928) 617–644.

http://dx.doi.org/10.1109/T-AIEE.1928.5055024
13The papers from 1924 and 1928 by Nyquist are cited in Claude Shannon’s classic 1948 essay (see Footnote 8 on Page 2),

where Nyquist’s seminal role in the development of information theory is acknowledged.
14C. E. Shannon: Communication in the presence of noise. Proc. IRE 37 (1949) 10–21. Reprinted in: Proc. IEEE 86 (1998)

447–457
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1.2.2 Fibres

There are two types of fibers, multimode fibres with typical core diameters of 50µm, 65µm, 100µm,
200µm, 1 000µm and 3 000µm, Fig. 1.3(a), and single-mode fibres with a core diameter of about 9µm,
Fig. 1.3(b). For the multimode fibre, coupling light from the transmitter into the fiber core is easier

(a) Multimode fibre with step-index profile (b) Single-mode fibre with step-index profile

Fig. 1.3. Fibre types with step-shaped refractive index profile comprising a higher-index core and a lower-index cladding
(a) Fat-core step-index multimode fibre with a relative refractive index difference ∆ ≈ 1.3 % (b) Long-haul step-index
single-mode communication fibre with ∆ ≈ 0.33 %

than coupling light into the much smaller core of a single-mode fibre. The disadvantage is the stronger
light impulse distortion of signals propagating in multimode fibres. A standard cladding diameter for
single-mode communication fibres is 125µm.

Intermodal dispersion Variation in propagation time among different modes creates intermodal di-
spersion, i. e., group delay differences, which are caused by optical path differences in a step-index multi-
mode fibre. The effect on a light impulse entering the multimode fibre is shown in Fig. 1.4(a). The output
impulse is broadened because it is composed of many smaller impulses arriving at different instances of
time. If the group velocity in the outer-core regions could be increased, the group delay of these rays
following longer geometrical paths could be made the same as for rays propagating on shorter geomet-
rical paths. This is achieved by gradually reducing the refractive index away from the fibre axis. Such a
waveguide is dubbed a graded-index fibre.

(a) Multimode fibre with step-index profile (b) Multimode fibre with graded-index profile

Fig. 1.4. Intermodal dispersion for multimode fibres. (a) Step-index profile with significant group delay differences
(b) Graded-index profile, where geometrical path length differences are compensated by radial variations in the refrac-
tive index

Chromatic dispersion Dispersion in an optical fibre is not limited to intermodal dispersion. Even
a single-mode fibre suffers from different group delays depending on the spectral content of the optical
signal. This again leads to output impulse broadening or intramodal dispersion, Fig. 1.5(a). At higher
bit rates, the broadened impulses spill into neighbouring time slots (intersymbol interference), and it
becomes increasingly difficult to decide between a logical “0” and a logical “1”, Fig. 1.5(b). Therefore,
the bit error probability BER (bit error ratio; frequently, but wrongly named “bit error rate”) increases,
such limiting the maximum transmission rate.

Transmission bands

Various transmission bands are designated with the following letters: Extended short-wavelength band
“S+”, short-wavelength band “S”, conventional or central band “C”, long-wavelength band “L”, extended
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(a) Chromatic dispersion in a single-mode fibre (b) Group delay dispersion and intersymbol interference

Fig. 1.5. Group delay dispersion and bit error probability (bit error rate, BER). (a) Different wavelengths (“colours”,
therefore “chromatic”) inside the same mode propagate with different velocities, thereby increasing the output impulse
width (b) Broadening of the transmitted impulse leads to bit detection errors

long-wavelength band “L+”. The attributed wavelengths (unit µm) are seen from Table 1.1. A typical
DWDM ITU-T channel grid15 for the C band is specified in Table 1.2.

Designation of 40-nm bands (λ/µm) at λ = 1.550µm

S+ S C L L+

1.450 1.470 1.490 1.510 1.530 1.550 1.570 1.590 1.610 1.630 1.650

Table 1.1. Designation of bands at λ = 1.550µm

Wavelength table for the C band (DWDM ITU-T grid)

λITU/ nm λITU/ nm λITU/nm λITU/ nm λITU/ nm λITU/ nm

1 527.99 1 534.25 1 540.56 1 546.92 1 553.33 1 559.78

1 528.77 1 535.04 1 541.35 1 547.72 1 554.13 1 560.61

1 529.55 1 535.82 1 542.14 1 548.51 1 554.94 1 561.42

1 530.33 1 536.61 1 542.94 1 549.32 1 555.75 1 562.23

1 531.12 1 537.40 1 543.73 1 550.12 1 556.55 1 563.05

1 531.90 1 538.19 1 544.53 1 550.92 1 557.36 ∆ = 0.79

1 532.68 1 538.98 1 545.32 1 551.72 1 558.17 all:

1 533.47 1 539.77 1 546.12 1 552.52 1 558.98 ±0.1

Table 1.2. DWDM ITU-T grid at λ = 1.550µm. Channel spacing corresponds to frequency grid ∆f = 100 GHz

Attenuation

Losses in optical fibres arise through scattering and absorption. Therefore, the power of a guided wave
decreases in z-direction from its initial value P0 according to

P (z) = P0 e−αz, a = 10 lg
P0

P (z)
= αz × 10 lg e = 4.34× αz. (1.2)

15Fujitsu: Lightwave Components & Modules Databook. (1998) p. 38. DFB lasers are commercially available with these
wavelength gradings.
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The power attenuation constant α (unit km−1) is usually expressed by specifying the attenuation16

a (“unit” dB).

1.2.3 Wavelength division multiplexing

The capacity of transmission links can be greatly extended by employing more than one optical carrier
in a wavelength d ivision multiplexing scheme (WDM)17,18, Figure 1.6. A number N of laser diodes
are modulated in intensity and emit light at wavelengths λ1, λ2, . . . , λi, . . . , λN near λ = 1.55µm. An
information channel when realized with a modulated optical carrier is termed an “optical channel” or a
“wavelength channel”, and referred to as “channel” for brevity. In addition to WDM, channel multiplexing
can be done in the time domain, leading to (optical) time-division multiplexing (OTDM).

For a WDM scheme, the optical carriers are separated by, e. g., 25 GHz, 50 GHz, 100 GHz (∆λ =
0.78 nm @ λ = 1.55µm) or 200 GHz (e. g., 100 channels at λ = 1.55µm and 40 Gbit/s are commer-
cially available, see Chapter 4). Thus, the total capacity of one single-mode fibre amounts to 4 Tbit/s
if the channels are separated in frequency by, e. g., ∆f = 100 GHz. An optical multiplexer (MUX) spa-
tially concentrates these modulated carriers to propagate as wavelength channels in one single fibre. An
optical amplifier (OA) in combination with a equal izer (EQUAL) for equalizing the gain in all channels
amplifies the signals, which are then transmitted through the single-mode transport fibre. Optical am-

Fig. 1.6. Wavelength division multiplexing transmission scheme. The path from LD MOD(λi) to Rx(λi) corresponds to the
simplified point-to-point transmission depicted in Fig. 1.1. [after Reference 18 on Page 6 (Fig. iii on Page xxiv)]

plifiers overcome the power loss in very long communication links. They have bandwidths in the order of
∆f = 5 . . . 10 THz centred at λ = 1.3µm and λ = 1.55µm, and remove the speed bottleneck from elec-
tronics by optics implementation. There are two primary types of OA, semiconductor optical amplifiers
(SOA), and doped f ibre amplifiers (DFA). Among all DFA, E r3+-doped f ibre amplifiers (EDFA) that
amplify light around λ = 1.55µm are the most mature.

A dispersion compensator (DISP-C) compensates the wavelength-dependent delay times inside each
channel. At the end of the first span, an optical add-drop multiplexer (OADM) adds or drops selec-
tively certain wavelength channels. Then, after a possibly repeated sequence of such spans, an optical
demultiplexer (DEMUX) finally separates all optical channels spatially, and optical receivers (Rx) at-
tached to the DEMUX outputs receive the optical signals. The path from LD MOD(λi) to Rx(λi) corre-
sponds to the simplified point-to-point transmission depicted in Fig. 1.1.

16Instead of choosing a new symbol a for the attenuation one could also write αdB = 10 lg (P0/P (z)) = αz × 10 lg e,
and specify αdB/ z in units of dB/ km. However, giving the quantity α in units of dB/ km would be misleading, because it
implies the nonsensical expression α/ z = α× 10 lg e.

17Agrawal, G. P.: Fiber-optic communication system. Chichester: John Wiley & Sons 1997. Chapter 7 p. 284
18Kartalopoulos, S. V.: DWDM — Networks, devices, and technology. John Wiley & Sons 2003



1.2. COMMUNICATION WITH LIGHT 7

1.2.4 Advantages and shortcomings of optical communications

Data transmission capacity

Obviously, optical communication systems can replace conventional electrical systems only, if there is
some advantage to be gained, which justifies the additional expenses of a twofold conversion current-light
and light-current. Some important advantages of optical signal transport are:

• Large transmission capacity because of high carrier frequency near fO = 200 THz, large fibre band-
width in the order of (250 . . . 190) THz = 60 THz

• Low fibre loss, about 2.2, 0.35, 0.15 dB / km at λ = 0.85, 1.3, 1.55µm, i. e., down to 3 dB loss for a
fibre length of L = 20 km corresponding to a power attenuation by a factor of only 2

• Immunity to interference because of the high carrier frequency, and because of the strong confine-
ment of the light inside the fibre

Three milestones of lightwave technology are especially noteworthy. Following an earlier suggestion,19,20

the first low-loss fibres were produced21 in 1970 reducing the loss from 1 000 dB / km to below 20 dB / km.
Further progress22 resulted by 1979 in a loss of only 0.2 dB / km near λ = 1.55µm. The ultimate low
loss23 of 0.154 dB / km for fibres with a silica (SiO2) core and a F-doped cladding is limited only by the
amorphous structure of silica (Rayleigh scattering) and was reached in 1986.

Although semiconductor lasers were first made24 in 1962, their use became practical only after 1970
when GaAs lasers operating continuously at room temperature were available25.

Finally, it was only after the invention and perfection of the Er-doped fibre amplifier26 (EDFA) in
1986 that optical communication became so powerful as it is today.

In recent years, with the increasing demand in transmission capacity, new frontiers have opened by the
re-invention of coherent optical communications, which had formerly been regarded as too complicated
and as obsolete in view of the availability of EDFA.

Reception sensitivity

Optical communications has also shortcomings as compared to electrical transmission. Electrical reception
is limited by thermal noise with a power Pv = kT0B (Boltzmann’s constant k, room temperature T0 =
293 K, signal bandwidth B), see Eq. (5.54) on Page 124. Optical systems, however, are limited by quantum
noise with an equivalent noise power Pqu = 2hfOB (Planck’s constant h, optical carrier frequency fO),
see Eq. (5.81) on Page 132. With the received electrical and optical signal powers Pel and Pop, we find the
respective signal-to-noise power ratios SNRel and SNRop. For equal SNR we see that electrical reception
is by far more sensitive (kT0 = 25 meV, hfO = 1 eV at fO = 242 THz, λO = 1.24µm),

SNRel =
Pel

kT0B
, SNRop =

Pop

2hfOB
,

Pel

Pop
=

kT0

2hfO
� 1 ,

Pel

Pop

∣∣∣∣
dB

≈ 10 lg
25 meV

2 eV
= −19 dB . (1.3)

Transmission span

Practical spans without amplification are about L = 70 km, because attenuation in the transmitting fibre
causes the power of the optical signal to decay exponentially with the transmission distance L according

19Kao, K. C.; Hockham, G. A.: Proc. IEE 113 (1966) 1151
20Werts, A.: Onde Electr. 45 (1966) 967
21Kapron, F. P.; Keck, D. .B; Maurer, A. D.: Appl. Phys. Lett. 17 (1970) 423
22Miya, T.; Terunuma, Y.; Hosaka, T.; Miyashita, T.: Ultimate low-loss single-mode fibre at 1.55µm. Electron. Lett. 15

(1979) 106–108
23Kanamori, H.; Yokota, H.; Tanaka, G.; Watanabe, M.; Ishiguro, Y.; Yoshida, I.; Kakii, T.; Itoh, S.; Asano, Y.; Tanaka,

S.: Transmission characteristics and reliability of pure-silica-core single-mode fibers. IEEE J. Lightw. Technol. LT-4 (1986)
1144–1149

24Nasledov, D. N.; Rogachev, A. A.; Ryvkin, S. M.; Tsarenkov, B. V.: Fiz. Tverd. Tela. 4 (1962) 1062 (Soviet Phys. Solid
State 4 (1962) 782

25Alferov, Z.: IEEE Sel. Topics Quantum Electron. 6 (2000) 832
26Poole, S. B.; Payne, D. N.; Mears, R. J.; Fermann, M. E.; Laming, R. E.: J. Lightw. Technol. 4 (1986) 870
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to exp (−αL), see Eq. (1.2) on Page 5. This transmission span seems to be astonishingly small. To explain
why this is so, we discuss a practical example27.

A transatlantic transmission from New York to London experiences an attenuation of about 1 400 dB
(7 000 km @ 0.2 dB / km). Thus, for receiving one photon in London we have to inject 10140 photons
into the optical fibre end in New York. If all the mass of our sun (msun = 3 × 1033 g) having an energy
equivalent of Wsun = mc2 = 1.8 × 1047 Ws could be converted into photons with a photon energy
hf = 6×10−34 Ws2× 200 THz = 1.2×10−19 Ws, we had generated 1.5×1066 photons at a wavelength of
1.55µm (f ≈ 200 THz), and could bridge a span with 660 dB loss, corresponding to a transmission distance
of 3 300 km only. For a direct transmission New York – London we thus had to evaporate 10140/1066 = 1074

suns.
This is quite a bit. The (observable) universe is estimated to have an extension of 1.4×1010 light years.

Its mean density28 is supposed to be 3 × 10−30 g / cm3. Therefore, the universe’s mass (comprising not
only suns) is muniv = 7×1054 g, and its energy equivalent is Wuniv = munivc

2 = 6×1068 Ws corresponding
to 4.7× 1087 photons at a wavelength of 1.55µm. If we are able to receive from these 4.7× 1087 photons
at least one photon, then the maximum span will be 877 dB /(0.2 dB / km) = 4 385 km. As a consequence,
for bridging the distance New York – London in one go, we had to burn 10140/1087 = 1053 universes!

This sounds absurd, because such an enormous explosion in New York could be definitely seen in
London (at least for a very short moment). However, for wireless transmission in free space a different
attenuation law holds. For an isotropic antenna, spherical waves are radiated having constant power on
a phase surface. Therefore the intensity decreases only in proportion to the square of the transmission
distance L−2, and not according to e−αL. Consequently, there is a break-even transmission distance LBE:
For L < LBE, guided waves propagate with smaller loss, while for L > LBE, free-space propagation has
the longer reach.

For optical fibre transmission we therefore keep the spans short enough, and compensate the un-
avoidable loss with optical amplifiers. Common types are erbium-doped fibre amplifiers (EDFA) with
an average output saturation power of about (20 . . . 30) dBm, or linear semiconductor optical amplifiers
(SOA) that are peak-power limited and saturate at output powers of about (0 . . . 3) dBm. For wireless
transmission, amplification would be also possible by using terrestrial relay stations, but it is naturally
excluded for deep-space communication. Still, fibre communication has the advantage of extremely high
carrier frequencies (e. g., 200 THz) which allow using a very broad spectrum for data transmission (e. g.,
2 THz). The relative transmission bandwidth, however, remains small (e. g., 1 %). With wireless carrier
frequencies even as high as 200 GHz, a relative bandwidth of 1 % means an absolute data bandwidth of
2 GHz only, which is three orders of magnitude less. Therefore, terrestrial broadband data communication
calls for photonics.

1.3 Mathematical definitions and relations

In Table 1.3 on Page 9 a number of mathematical definitions and relations as listed. They are used
throughout the text and are referred to only where required for understanding. Note that temporal and
spatial Fourier transforms and their inverse transforms assume the positive time dependency exp ( jωt)
as is common in electrical engineering (ee). Physicists (phys) prefer using the symbol i =

√
−1 for the

imaginary unit and work with a negative time dependency exp (− iωt). Naturally, both notations describe
the same physical situation. The formulations are complex conjugate29 to each other, as can be seen for
the example of a plane wave propagating along the +z-direction,

Ψee (t, z) = A (t) e j(ωt−βz), ψphys (z, t) = a (t) e i(βz−ωt), Ψee (t, z) = ψ∗phys (z, t) . (1.4)

27Calculations stimulated by an oral presentation of N. J. Doran (S. K. Turitsyn, M. P. Fedoruk, N. J. Doran and W.
Forysiak: Optical soliton transmission in fiber lines with short-scale dispersion management. 25th European Conference on
Optical Communication (ECOC’99), Nice, France, September 26–30, 1999). — Universe’s mass calculations and web address
contributed by Dipl.-Phys. Jan Brückner, DFG Research Training Group 786 “Mixed Fields and Nonlinear Interactions”,
Karlsruhe University, Germany, June 23, 2005

28http://curious.astro.cornell.edu/question.php?number=342
29Translating physics notation to electrical engineering and vice versa: “Take the complex conjugate of all quantities.”
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Notation and formulae

Time t (1)

Frequency f , wavelength λ, vacuum speed of light c f = c
λ
, c = 2.997 924 58× 108 m / s (2)

Angular frequency ω, vacuum propagation constant k0 ω = 2πf , k0 = ω
c

= 2π
λ

(3)

Cartesian spatial coordin. & spatial (angular) frequencies x, y, z & ξ, η, ζ (kx = 2πξ, ky = 2πη, kz = 2πζ) (4)

Imaginary unit, complex conjugate u∗ of u j =
√
−1 , u = p+ j q , u∗ = p− j q (p, q real) (5)

Adding to u its complex conjugate u∗ u+ u∗ = 2<{u} , u− u∗ = j 2={u} (6)

Plane wave propagating in medium with
refractive index n, vacuum speed of light c

exp [ j (ωt− (kxx+ kyy + kzz))] ,

k2
x + k2

x + k2
z = n2k2

0 = n2 ω2
/
c2

(7)

Plane wave propagating in + z-direction,
propagation constant β ≥ 0, and effective index ne

exp [ j (ωt− βz)] , ne = β
k0

(8)

Kronecker symbol δmm′ , m,m
′ ∈ Z δmm′ =

{
1 for m = m′

0 else
(9)

Dirac function δ (t)
Ψ (0) =

∫+∞
−∞ δ (t)Ψ (t) dt, δ (t) = lim

k→∞

∫+k
−k e± j 2πft df

δ (t) = 0 for t 6= 0
(10)

Heaviside function H (t)

∫+∞
0 Ψ (t) dt =

∫+∞
−∞ H (t)Ψ (t) dt,

H (t) =

{
1 for t > 0

0 for t < 0

(11)

rect-function rect
(
t
T

) ∫+T/2
−T/2

Ψ (t) dz =
∫+∞
−∞ rect

(
t
T

)
Ψ (t) dt,

rect
(
t
T

)
=

{
1 for |t| < T/ 2

0 for |t| > T/ 2

(12)

sinc-function sinc
(
t
T

)
sinc

(
t
T

)
=

{
1 for t = 0
sin(πt/T )
πt/T

else
(13)

triang-function triang
(
t
T

)
= 1

T
rect

(
t
T

)
∗ rect

(
t
T

)
triang

(
t
T

)
=

{
1− |t|/T for |t| ≤ T
0 else

(14)

Continuous Fourier transform (FT, Ψ̆ (f) = F {Ψ (t)}) Ψ̆ (f)=
∫+∞
−∞ Ψ (t) e− j 2πft dt, if Ψ(t) real: Ψ̆(f)= Ψ̆∗(−f) (15)

Continuous inverse FT (IFT, Ψ (t) = F−1{Ψ̆ (f)}) Ψ (t) =
∫+∞
−∞ Ψ̆ (f) e+ j 2πft df (16)

Power spectrum ΘΨ (f) := F {ϑΨ (t)}
Autocorrelation function (ACF) ϑΨ (t) := F−1 {ΘΨ (f)} ΘΨ (f) =

∣∣Ψ̆ (f)
∣∣2 , one-sided power spectrum:

2ΘΨ (f) for f > 0 and real Ψ (t)
(17)

Continuous spatial Fourier transform (SFT) Ψ̃ (ξ, η) =
∫∫+∞
−∞ Ψ (x, y) exp [+ j (ξx+ ηy)] dxdy (18)

Continuous spatial inverse FT (SIFT) Ψ (x, y) =
∫∫+∞
−∞ Ψ̃ (ξ, η) exp [− j (ξx+ ηy)] dξ dη (19)

FT of rect-function
∫+∞
−∞ rect

(
t
T

)
e− j 2πft dt = T sinc (fT ) (20)

FT of sinc-function
∫+∞
−∞ sinc

(
t
T

)
e− j 2πft dt = T rect (fT ) (21)

FT of triang-function
∫+∞
−∞ triang

(
t
T

)
e− j 2πft dt = T sinc2 (fT ) (22)

Inner product (Ψ1 · Ψ2) ≡ 〈Ψ1 | Ψ2〉 =
∫+∞
−∞ Ψ∗1 (t′)Ψ2 (t′) dt′ (23)

Convolution
(Ψ1∗ Ψ2) (t) :=

∫+∞
−∞ Ψ1 (t′)Ψ2 (t− t′) dt′

=
∫+∞
−∞ Ψ̆1 (f) Ψ̆2 (f) e j 2πft df

(24)

Cross-correlation function ϑΨ1Ψ2 (t) := (Ψ1⊗ Ψ2) (t)
Cross power spectrum ΘΨ1Ψ2

(f) := F
{
ϑΨ1Ψ2

(t)
} (Ψ1⊗ Ψ2) (t) :=

∫+∞
−∞ Ψ1 (t′)Ψ∗2 (t′ − t) dt′

=
∫+∞
−∞ Ψ̆1 (f) Ψ̆∗2 (f) e j 2πft df

(25)

cosx+ cos y & sinx+ sin y 2 cos x−y
2

cos x+y
2

& 2 cos x−y
2

sin x+y
2

(26)

cos (x± y) & sin (x± y) cosx cos y ∓ sinx sin y & sinx cos y ± cosx sin y (27)

cosx cos y (+), sinx sin y (−) & sinx cos y 1
2

[cos (x− y)± cos (x+ y)] & 1
2

[sin (x− y) + sin (x+ y)] (28)

a cosx+ b sinx = <
{√

a2 + b2 e− j arctan(b/a) e j x
} √

a2 + b2 cos
(
x−arctan b

a

)
=
√
a2 + b2 sin

(
x+arctan a

b

)
(29)

Logarithms and their bases, loga x =
logb x
logb a

lg x = log10 x, lnx = loge x, lbx = log2 x (30)

Power and amplitude ratios a and b =
√
a in dB adB = 10 lg a = 20 lg b (31)

Table 1.3. Mathematical definitions and relations that are used throughout the text, usually without a specific reference
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1.4 Content overview

In the following, transmitters and receivers are discussed as well as their function in feeding and sinking
data streams to and from an optical channel. In this context, Chapter 2 explains some basic commu-
nications concepts. We treat sampling, conversion between the analogue and the digital domain, an
abstraction of the optical channel, preliminary information on statistical signal perturbations (noise),
Shannon’s channel capacity, modulator concepts and modulation formats.

Transmitters are presented in Chapter 3. This includes light sources for electro-optic (EO) conversion
as well as modulators. Very briefly we mention in Chapter 4 semiconductor optical amplifiers, and refer
to doped fibre amplifiers.

The functioning of receivers is illustrated in Chapter 5. We start by explicating the properties of
pin photodiodes as opto-electronic (OE) converters, give details on the optical and on the electrical
subsystems for incoherent and coherent reception, derive optical and electrical signal-to-noise power
ratios without and with an optical pre-amplifier, and explain various metrics for signal quality.

Finally, in Chapter 6, we list a few transmission impairments, discuss concatenated optical amplifier
links, and mention signal shaping.

Several appendices complete the text: Appendix A on linear and nonlinear fibre properties, Appendix
B on sampling, quantizing and on the discrete Fourier transform, and Appendix C on the rectification of
coherent carriers embedded in noise.



Chapter 2

Optical communication concepts

In the following, we present the basic principles of communication systems with a focus an digital com-
munications. Particularly important are the physical characteristics of the channel through which the
information is transmitted because the channel determines the properties of the basic building blocks
which complete the communication system1. Figure 2.1 displays the schematic2 of a communication sys-
tem. The building blocks are described following largely the text in Proakis’ book3. The source may
be either an analog signal, such as an audio or video signal, or a digital signal, such as the output of
a teletype machine that is discrete in time and has a finite number of output characters. In a digital
communication system, the analogue messages produced by the source enter a signal conditioning unit,

Fig. 2.1. Elements of a communications system. The block named “pulse shaper” is a filter that shapes the transmitted
pulses in an appropriate fashion. At the receiver side, the corresponding block serves a similar purpose. The filter shapes
the received pulses such that an optimum detection becomes possible. For instance, if by dispersion in the fibre channel the
pulse has unduly broadened, this receiver filter can undo the broadening. Both filters can be part of the transmitter or the
receiver, respectively, or they can be separated as in the figure. [Modified from Ref. 2 on Page 11. Slide 10]

1J. G. Proakis: Digital communications, 4th Ed. New York: McGraw-Hill 2001
2Wireless Information Transmission System Lab: Introduction to digital communications system. Institute of Commu-

nications Engineering, National Sun Yat-sen University, Taiwan.
http://wits.ice.nsysu.edu.tw/course/pdfdownload/95 2%5C%E7%84%A1%E7%B7%9A%E9%80%9A%E8%A8%8A%E5%9F%BA%E9%A0

%BB%E8%A8%8A%E8%99%9F%E8%99%95%E7%90%86%E8%88%87%E7%B3%BB%E7%B5%B1%E8%A8%AD%E8%A8%88/BB-03-DigitalComm.pdf

This address looks weird: The symbols %E8 etc. represent Chinese characters.
3See Ref. 1 on Page 11, Sect. 1-1 and 1-2

11
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where they are sampled and converted into a sequence of binary digits by the quantizer. Ideally, we should
like to represent the source output (message) by as few binary digits as possible. In other words, we seek
an efficient representation of the source output that results in little or no redundancy. The process of
efficiently converting the output of either an analog or digital source into a sequence of binary digits is
called source encoding.

The sequence of binary digits from the quantizer, which we call the information sequence, is passed to
the encoder (“coder” for short). The purpose of the encoder is to introduce, in a controlled manner, some
redundancy in the binary information sequence that can be used at the receiver to overcome the effects
of noise and interference encountered in the transmission of the signal through the channel. In effect,
redundancy in the information sequence aids the receiver in decoding the desired information sequence.
For example, a (trivial) form of encoding of the binary information sequence is simply to repeat each
binary digit m times, where m is some positive integer. More sophisticated (nontrivial) encoding involves
taking k information bits at a time and mapping each k-bit sequence into a unique n-bit sequence, called
a code word or symbol. The amount of redundancy introduced by encoding the data in this manner is
measured by the encoder ratio rc = n/ k.

For originally digital information, the encoder would be part of a digital signal processing unit (DSP).
The binary sequence at the output of the encoder or the DSP unit is passed to a digital-to-analogue
converter (DAC) which provides a physical quantity (e. g., a voltage) corresponding to the binary symbol
at its input. Finally, a pulse shaper serves as the interface to transmitter and communication channel.

The transmitter comprises a modulator that modulates the optical carrier with the physical represen-
tation of a symbol. In its simplest form the carrier could be just switched on and off (OOK, on-off keying).
More complicated symbols could represent r coded information bits at a time by using M = 2r distinct
waveforms sm (t), m = 0, 1, 2, . . . ,M − 1, one waveform for each or the 2r possible r-bit sequences. We
call this M -ary modulation (M > 2). Hence, when the channel bit rate Rb is fixed, the amount of time
available to transmit one of the M waveforms corresponding to a r-bit sequence (one “symbol”) is r times
the time period 1/Rb in a system that uses binary modulation, because a new r-bit sequence enters the
modulator only after a symbol period Ts = r/Rb.

The communication channel is the physical medium that is used to send the signal from the transmitter
to the receiver. In wireless transmission, the channel may be the atmosphere (free space). On the other
hand, telephone channels usually employ a variety of physical media, including wire lines, optical fiber
cables, and wireless (microwave radio). Whatever the physical medium used for transmission of the
information, the essential feature is that the transmitted signal is corrupted in a random manner by a
variety of possible mechanisms, such as additive thermal noise generated by electronic devices, man-made
noise, e. g., automobile ignition noise, and atmospheric noise, e. g., electrical lightning discharges during
thunderstorms.

As mentioned in Sect. 1.2.4 and Eq. (1.3) on Page 7, quantum phenomena play a critical role in
optical communications, because the quantum energy hfopt = 1 eV of an optical carrier photon at
frequency fopt = 242 THz (λopt = 1.24µm) is much larger than the thermal energy kT0 = 25 meV at
room temperature T0 = 293 K. Therefore, with a given power P , the granularity of the photon flux is
much more noticeable at optical frequencies, and the optical signal power must be much larger than the
electrical signal power for the same signal-to-noise power ratio at the receiver. As we had seen, electrical
systems are significantly more sensitive than optical transmission systems, however, their limitations in
bandwidth call for photonics.

At the receiving end of a digital communication system, the demodulator as part of the receiver
processes the channel-corrupted transmitted waveform. After pulse shaping for optimal reception, the
received waveform passes an analogue-to-digital converter (ADC). Its output enters either a DSP unit
which does the required signal processing all-digitally, or it is input to the signal conditioning unit. This
signal conditioning unit takes the sequence of numbers from the ADC and passes it to the channel decoder,
which attempts to reconstruct the original information sequence from knowledge of the code used by the
channel encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the frequency with which errors
occur in the decoded sequence. More precisely, the average probability of a bit error at the output of the
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decoder is a measure of the performance of the demodulator-decoder combination. In general, the bit error
probability (BER, bit error ratio) is a function of the code characteristics, the types of waveforms used
to transmit the information over the channel, the transmitter power, the characteristics of the channel,
i. e., the amount of noise, the nature of the interference, and the method of demodulation and decoding.

As a final step, when an analog output is desired, a low-pass filter interpolates the received sampled
data for reconstructing the original message sent by the source. Due to unavoidable errors, the received
message is an approximation to the originally sent message. The difference or some function of the
difference between the original signal and the reconstructed signal is a measure of the distortion introduced
by the digital communication system.

As discussed previously, optical fibres offer the communications system designer a channel bandwidth
that is several orders of magnitude larger than coaxial cable channels. Optical fiber cables have been
developed that have a very low signal attenuation, and highly reliable photonic devices are available for
signal generation and signal detection.

The transmitter in a fiber optic communication system is a light source, mostly a semiconductor laser
diode (LD), occasionally also a light-emitting diode (LED) for bridging short transmission distances.
Information can transmitted most simply by modulating the intensity of the light source with the message,
see Fig. 1.2 on Page 3. The resulting signal propagates through the fiber as a lightwave and is amplified
periodically to compensate the fibre attenuation, see Sect. “Transmission span” on Page 7 ff. In the case
of digital transmission, the signal can be also detected and regenerated by baseband repeaters at larger
distances along the transmission path to undo any distortion. At the receiver, the light intensity is detected
by a photodiode, whose output is an electrical signal that varies in direct proportion to the power of the
light impinging on the photodiode, Eq. (1.1) on Page 2. Prominent sources of noise in fiber optic channels
are light sources, optical amplifiers, photodiodes and electronic amplifiers.

2.1 Signal conditioning

Our focus lies on digital communication systems, so we need first to convert any analogue signal to the
digital domain, Fig. 2.1 on Page 11. This is done in the signal conditioning unit by sampling, quantization,
and coding. After transmission, the original analogue signals must be reconstructed by converting the
received digital signals back to the analogue domain in another signal conditioning unit. Alternatively, if
digital data only are to be transmitted and received, the digital signal processing (DSP) block provides
all the required signal conditioning.

Appendix B on Page 183 ff. treats some important aspects of digital signal processing (DSP) like
sampling with finite temporal bin sizes, quantization noise, effective number of bits, and properties of the
discrete Fourier transform.

2.1.1 Sampling

A real signal Ψ (t) with a spectrum Ψ̆ (f) that is limited to a bandwidth B can be reconstructed from
samples Ψ (iTs) (i = 0,±1,±2, . . .), if Ts = 1/Fs ≤ 1/(2B) holds, i. e., if the sampling frequency Fs is as
large or larger than the signal’s bandwidth B. Real samples with a rate of at least Fs = 2B have to be
recorded. A sampled pulse amplitude modulated (PAM) signal Ψs (t) results from multiplying the signal
Ψ (t) with the sampling function σ(t). For the temporal functions Ψ (t), σ (t), Ψs (t) and for their spectra
Ψ̆ (f), σ̆ (f), Ψ̆s (f) we find

σ (t) = Ts

+∞∑
i=−∞

δ (t− iTs) =

+∞∑
i=−∞

e j 2πi t/Ts , σ̆ (f) =

+∞∑
i=−∞

δ (f − iFs) , Fs =
1

Ts
,

Ψs (t) = Ψ (t)σ (t) , Ψ̆s (f) = Ψ̆ (f) ∗ σ̆ (f) =

+∞∑
i=−∞

Ψ̆ (f − iFs) .
(2.1)

The sampling function σ (t) is self-reciprocal in Fourier space. For calculating σ̆ (f) one uses the identity
Ts
∑+∞
i=−∞ exp (− j 2πfiTs) =

∑+∞
i′=−∞ δ (f − i′/Ts) resulting from a Fourier expansion of the periodically
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(a) Sampling function σ (t) and sig-
nal function Ψ (t). Sampled values
Ψs (iTs) indicated by circles (◦)

(b) Fourier transform of sampling
function σ̆ (f) and baseband signal

spectrum Ψ̆ (f) with bandwidth B.

Fig. 2.2. Sampling of a real bandlimited signal. Arrows represent a comb of Dirac functions δ (t) and δ (f) in time and
frequency domain, respectively. (a) Sampling function σ (t) with period Ts and signal function Ψ (t) with sampled values

Ψ (iTs). (b) Fourier transform σ̆ (f) of sampling function σ (t) and signal spectrum Ψ̆ (f), limited to the Nyquist bandwidth
B = Fs/ 2 = 1/ (2Ts). This schematic baseband spectrum with upper (solid lines) and lower sidebands (broken lines) is
periodically repeated at multiples of the sampling frequency Fs due to the sampling. For reconstructing the original signal
Ψ (t), the spectrum of the sampled time function must be filtered with a rectangular (“brick wall”) filter to remove the
so-called image spectra.

repeated function δ(f), which itself represents a δ-“comb”. — Sampling with a finite window size is treated
in Appendix B.1 on Page 183 ff.

Nyquist sampling The sampling process is illustrated in Fig. 2.2. The arrows represent combs of Dirac
functions δ (t) and δ (f) in time and frequency domain, respectively. Figure 2.2(a) shows the sampling
function σ (t) with period Ts, the continuous real signal function Ψ (t), and its sampled values Ψ (iTs).
In Fig. 2.2(b) the self-reciprocal Fourier transform σ̆ (f) of the sampling function is displayed. The signal
spectrum Ψ̆ (f) is assumed to be limited to the bandwidth B and sampled with the so-called Nyquist rate
Fs = 2B. As a consequence of the sampling process (mixing of Ψ (t) with σ (t)), the baseband spectrum
Ψ̆ (f) is periodically repeated. The repetitions are centred at multiples of the sampling frequency (rate)
Fs. It is obvious that an inverse Fourier transform of the spectrum Ψ̆s (f) of the sampled signal cannot
reproduce the original continuous signal Ψ (t). For a true reconstruction, Ψ̆s (f) must be filtered with a
rectangular (“brick wall”) lowpass filter with a one-sided width B to remove the so-called image spectra.

Undersampling If the sampling frequency Fs < 2B is smaller than the real signal’s doubled bandwidth,
adjacent upper and lower signal sidebands overlap. In this case, even an ideal lowpass with one-sided
bandwidth B cannot prevent signal perturbations. Because the perturbation comes from spectra centred
at “other” neighbouring positions, this is called an “aliasing error”4.

Oversampling To prevent aliasing with non-ideal filters having finite filter slopes, the sampling fre-
quency Fs > 2B should be larger than the real signal’s doubled bandwidth. Adjacent upper and lower
sidebands are then separated by a spectral guard band of width Fs − 2B that accommodates real-world
filter slopes.

Reconstruction example for a real signal A real signal Ψ (t) with bandwidthB can be reconstructed
from its Nyquist-sampled data Ψ (iTs) by filtering with a brick wall filter having a transfer function

h̆BW (f) and an impulse response hBW (t), see Table 1.3 on Page 9,

h̆BW (f) = rect

(
f

B

)
, hBW (t) =

1

Ts
sinc

(
t

Ts

)
, Ts =

1

2B
(real Nyquist sampling). (2.2)

4The noun “alias” (pronounced ["eIlI@s]) denotes a false or assumed identity: “A spy operating under the alias H21” (H21
is better known by her stage name Mata Hari, a Dutch exotic dancer, courtesan, and convicted spy, who was executed
by firing squad in France under charges of espionage for Germany during World War I.) — The noun “aliasing” means a
misidentification of a signal frequency, introducing distortion or error.

Origin late Middle English: from Latin alias (sc. partes, acc. pl. f. of alius), ‘at another time, otherwise, else’
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Because filtering means multiplying a signal spectrum with the filter’s transfer function, we have to
perform the operation Ψ̆s (f) h̆BW (f) , and because this is equivalent to a convolution Ψs (t) ∗ hBW (t)
in the time domain, see Table 1.3, we find from combining Eq. (2.1) and (2.2) the following recipe to
interpolate between the known sampling points:

Ψ (t) =

+∞∫
−∞

Ψs (t′)hBW (t′ − t) dt′ =

+∞∑
i=−∞

+∞∫
−∞

Ψ (t′) δ (t′ − iTs) sinc

(
t′ − t
Ts

)
dt′

=

+∞∑
i=−∞

Ψ (iTs)
sin (π ( t/Ts − i))
π ( t/Ts − i)

=

+∞∑
i=−∞

Ψ (iTs) sinc ( t/Ts − i) . (2.3)

With Nyquist sampling, all sinc-functions in Eq. (2.3) but one are zero at the sampling points iTs. As
can be easily seen, any other interpolation procedure, e. g., a linear interpolation, would not suffice for
reconstructing Ψ (t). If the same signal as before was oversampled by a factor q > 1 so that the samples
are positioned at times t = iTs/ q instead of t = iTs, then all occurrences of i in the arguments of the
sum Eq. (2.3) have to be replaced by i/ q.

More on in-between zero padding, on end zero padding, and on interpolation can be found in Appendix
B.3 on Page 193 ff.

Complex signals For a complex signal, each sampling point contains double the information com-
pared to a real signal with equal information content. Upper and lower sidebands in Fig. 2.2(b) are no
longer correlated, and the bandwidth B now describes the full width of the shaded area. The period for
simultaneous Nyquist sampling of real and imaginary part doubles compared to Eq. (2.2) for real samples,

Ts =
1

B
, Fs = B (complex Nyquist sampling). (2.4)

2.1.2 Quantization and coding

After the sampling process, the resulting time-discrete signal still covers a continuum of possible values
Ψ (iTs). However, from a signal integrity point of view it is advisable to transmit a digital representation
of the signal, i. e., a set of numbers representing a finite count of so-called quantization levels. For an
average electrical signal power PS the effective signal amplitude is

√
PS , thus representing the span of

the samples Ψ (iTs). However, there is also uncorrelated electrical noise5 with power PR and an effective
noise amplitude

√
PR.

Quantization For quantization, the effective signal span
√
PS has to be covered with a number of M

discrete quantization levels (not necessarily equidistantly spaced) such that one can assign one out of M
discrete values to each sampling point. Clearly, this procedure leads to additional inaccuracies named
quantization noise6, see Appendix B.2.3 on Page 192 ff., Eq. (B.42b). The logarithmic signal-to-noise
power ratio due to quantizing a sinusoidal signal by an analogue-to-digital converter (ADC) with r bit
and M = 2r � 1 levels is approximately, according to Appendix B.2.3, Eq. (B.43) on Page 193,

SNR
( sin )
q,dB = 6.02 r + 1.76 , re = ENOB =

SNDRq,dB

6.02
− 0.293 . (2.5)

The presence of noise decreases the effective number of bits (ENOB) from the physical value r to a smaller

effective value re = ENOB. Again, Eq. (2.5) can be used, if SNR
( sin )
q,dB is now interpreted as the signal-to-

noise-and-distortion power ratio SNDRq,dB at the input of the ADC, and r is replaced by re = ENOB, see
Appendix B, Eq. (B.44) on Page 193. Figure 2.3 (lower row) shows that increasing the physical number

5Subscript “R” from German “Rauschen” (noise), in conformity with already existing texts and figures, which otherwise
would have to be re-designed.

6Valley, C. G.: Photonic analog-to-digital converters. Opt. Express 15 (2007) 1955–1982
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Fig. 2.3. Quantization, noise and effective number of bits (ENOB) in an analogue-to-digital converter (ADC). Input x(t),
down-scaled quantized output y(t)/a and quantization error (quantization noise) nq(t) as a function of time t. The quantity
a is the average slope of the ADC, y = ax. Upper row: Quantization of noiseless signal x(t) with r = {3, 4, 5}bit and
M = 2r levels. The larger r becomes, the better the down-scaled quantized output y(t)/a approximates the input x(t)
(clearly visible for t = {0 . . . 1, 5 . . . 7, 9 . . . 10}). Lower row: Quantization of the signal x(t) superimposed by noise. For
larger r, the ENOB does not increase accordingly, due to the input noise of the ADC. [modified from Fig. 1 and 2 in Ref. 6
on Page 15]

of quantizing bits does not increase the effective number of bits above a certain level, which is fixed by
SNDRq,dB of Eq. (2.5)

It makes no sense to choose M = 2r so large that the resulting quantization noise with RMS value
σnq , see Eq. (B.42b), becomes much smaller then the noise which comes along with the signal. If the step
size q ≈

√
PR between levels is chosen to be of the order of the signal’s noise

√
PR, the quantization noise

σnq = q/
√

12 ≈ 1
3q is of the order of the signal’s noise

√
PR. Therefore a coarse estimate of the proper

number of levels is M = 1 +
√
PS
/√

PR (one more level than intervals), a number which is intimately
connected to the signal-to-noise power ratio (SNR),

γ ≡ SNR :=
PS
PR

, γdB = 10 lg (γ) , M = 1 +
√
γ, M2 = 1 + γ + 2

√
γ ≈ 1 + γ. (2.6)

Coding Having associated the samples Ψ (iTs) with discrete values, these numbers are expressed by
code words, mostly choosing binary numbers with r places (voice signals can be encoded with r = 8).
Each digit of a binary code word (bit, binary digit) assumes bl = 2 logical levels zero (0) or one (1). Also
codes with bl > 2 are used. The number of bits7 r needed to code each sample is related to the number
of quantized signal levels M of Eq. (2.6),

M = brl , r = logblM =⇒ r ≈
10 lg

√
1 + γ

10 lg 2
≈ 3.32× γdB

2
for bl = 2, γ � 1 . (2.7)

The resulting temporal bit sequence of logical 1 and 0 is known as a binary pulse code modulation (PCM).
For transmission, the PCM signal has to be encoded in a sequence of symbols made up of discrete values
of a physical quantity, e. g., a sequence of binary impulses p(t) with amplitudes an = 0, 1. For bl = 2, the
PCM bit rate Rb is a multiple r of the sampling rate Fs,

Rb = rFs, Rb = Fs log2M for bl = 2. (2.8)

An example for binary PCM is telephone voice transmission with B = 3.4 kHz, where r = 8 and Fs =
8 kHz with Rb = 8Fs = 64 kbit/s are common. The circuitry responsible for converting analog electrical
signals to digital data and vice versa is known as coder / decoder (CODEC). A CODEC translates each
sampled value into its binary representation.

7Changing the base of the logarithm of x from a to b:
loga x = y logb x, x = ay logb x, logb x = logb

(
ay logb x

)
= y logb x logb a → y = 1/ logb a,

logb x = logb a loga x. Example: log10 x = log10 2 log2 x = 0.301× log2 x, log2 x = 3.32× log10 x.
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Forward error correction (FEC) With increasing computing power, a redundancy transmission
scheme becomes possible, where codes are transmitted which allow an error correction at the receiver
side. For an optical communication channel at 40 Gbit/s the bit error probability (BER) performance
of moderate-length nonbinary low-density parity-check (LDP) codes8,9,10,11 is as follows (RS stands for
Reed-Solomon):

First generation FEC Hard-decision block code, typically RS(255, 239) with a 6.69 % overhead. For
an output BER = 10−13, the RS code yields a net coding gain (see below) of about 6 dB.

Second generation FEC Hard-decision concatenated codes combined with interleaving and iterative
decoding techniques to improve the FEC capability. The ITU-T G.975.1 standard has defined eight
second-generation FEC algorithms with 6.69 % overhead. As an example, an LDP(29136, 27 315)
code12 achieves a coding gain of 9.4 dB at an output BER = 10−15, starting from a pre-FEC
BER = 4.45× 10−3.

Third generation FEC Soft-decision13 FEC (SD-FEC) with turbo product and LDP codes are es-
pecially necessary for 100G long-haul transmission equipment. Coherent receiving technology in
optical communication systems and the rapid growth in computing power enables soft-decision
FEC. For an output BER = 10−15 with 15 . . . 20 % overhead, soft-decision FEC yields a net coding
gain of 11 dB. An FEC scheme14 with 15 % overhead and an input pre-FEC BER = (1.8 . . . 2)×10−2

effectively prevents line errors.

Without going into coding details, these examples demonstrates the potential of the technique: A coding
gain of about 10 dB means that 10 dB less power can be received for a final BER = 10−15 than without
FEC. This allows a raw BER of the order of 10−4. The price is that a data rate of, e. g., 40 Gbit/s increases
to a line rate of 43 Gbit/s with a redundancy overhead of about 7 %.

Bit rate The minimum PCM bit rate (bl = 2) resulting from analogue-to-digital conversion of a
bandwidth-limited real-valued signal (sampling rate Fs = 2B, number of quantized signal levels M)
for a signal-to-noise power ratio γ as in Eq. (2.6) is15,16

Rb = rFs = 2B log2M = B log2

(
M2
)

(for a real-valued band-limited signal),

Rb ≈ B log2 (1 + γ) = B
10 log10 (1 + γ)

10 log10 2
≈ 3.32×B γdB for γ � 1 . (2.9)

If a real signal with bandwidth B is sampled with a rate Fs = 2B, quantized with multiple levels M , and
encoded with symbols representing r bit each, the symbol rate17 equals the sampling rate, Rs = Fs (unit

8Djordjevic, I. B.; Vasic, B.: Nonbinary LDPC codes for optical communication systems. IEEE Phot. Technol. Lett. 17
(2005) 2224–2226

9F. Chang, K. Onohara, T. Mizuochi: Forward error correction for 100G transport networks. IEEE Comm. Mag. 48
(2010) S48–S55

10Fujitsu Network Communications: Soft-Decision FEC Benefits for 100G. White Paper (2012)
http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/Soft-Decision-FEC-Benefits-or-100G-wp.pdf

11Zhu Xiao-yu: A brief analysis of SD-FEC. ZTE Technol. 15 (2012) 23–24
http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2012/no5/

12See Ref. 9 on Page 17. Fig. 3
13Soft-decision decoding uses the waveform information that is output by channels. A real number is output by a matched

filter, and the demodulator sends this to a soft-decision decoder. The decoder needs not only 0 or 1 code streams but also
soft information to indicate the reliability of these input code streams. The further the code value is from the decision
threshold, the more reliable the signal is, and vice versa. Because a soft-decision decoder has more channel information than
a hard-decision decoder, it can use the information through probability decoding and obtain higher coding gains than a
hard-decision decoder. [Cited after Ref. 11 on Page 17]

14See Ref. 11 on Page 17
15See Ref. 11 on Page 3
16R. V. L. Hartley: Transmission of information. Bell Syst. Techn. J. 7 (1928) 535–563.
17Jean-Maurice-Émile Baudot, ?Magneux (France) 11.9.1845, † Sceaux (France) 28.3.1903, engineer who, in 1874, received

a patent on a telegraph code that by the mid-20th century had supplanted Morse code as the most commonly used telegraphic
alphabet. In Baudot’s code, each letter was represented by a five-unit combination of current-on or current-off signals of
equal duration.
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Bd)18, and is smaller than the bit rate Rb by a factor of r. Depending on the shape of the pulses, the
occupied spectral passband width B around an optical carrier changes. When signalling with a sequence
of real-valued sinc-shaped so-called Nyquist pulses

∑+∞
i=−∞ Ψ (iTs) sinc ( t/Ts − i) as in Eq. (2.3), the

required spectral passband width B = 2B is minimum as compared to other pulse shapes. If the Nyquist
pulses are in addition complex-valued, the required spectral passband width is B = B, and we find

Rs = Fs =
Rb
r
, sinc -pulses with spectral width B = Fs =

{
2B (real symbols)
B (complex symbols)

. (2.10)

2.2 Optical fibre channel

Shannon19defined: “The channel is merely the medium used to transmit the signal from transmitter to
receiver. It may be a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.”
Here, we follow this definition and describe the physical channel first by the greatly simplified model of a
linear lossless weakly guiding optical single-mode fibre (that in fact supports two orthogonally polarized
modes), specifying in Sect. 2.2.1 its impulse response and its transfer function, respectively.

We start with the scalar form of Maxwell’s equations Eq. (A.2) on Page 175 of Appendix A, and show
interest only in the fundamental modal field Ψ (t, z) := Ψ (t, ~r ), which we represent by an equivalent plane
wave propagating in +z-direction with the propagation constant β (ω) = ne (ω) k0 (propagation constant
in vacuum k0 = ω/ c, equivalent modal refractive index ne = β/ k0 =

√
εr eff ). The propagation constant

must be calculated from an eigenfunction analysis.

Our solution ansatz consists of a carrier wave exp ( jω0t) with angular frequency ω0 = 2πf0, which is
modulated with a complex amplitude a (t) that varies slowly on the scale of the optical carrier’s period
1/ f0. Consequently, Eq. (A.2) is solved by Ψ (t, z), the Fourier transform of which is denoted by Ψ̆ (f, z),

Ψ (t, z) = a (t) e j[ω0t−β(ω0)z], Ψ̆ (f, z) = ă (f − f0) e− j β(ω0)z . (2.11)

The impact of fibre nonlinearities is described in Sect. 2.2.2 with the help of the nonlinear material
polarization introduced in Sect. A.3.2 of Appendix A on Page 177 ff.

After that we discuss the logical channel in Sect. 2.2.3 on Page 20 and formulate its data carrying
capacity in terms of the signal-to-noise power ratio SNR.

2.2.1 Propagation in a linear fibre

The fundamendal-mode transfer function h̆c(f) := h̆ (f, L) of a weakly guiding fibre with length L is
defined by the ratio of the Fourier transforms of the fields at output z = L and input z = 0 of the fibre.
The (analytic) transfer function h̆c(f) and the associated (causal) real impulse response hc(t) are

h̆c(f) := h̆ (f, L) =
Ψ̆ (f, L)

Ψ̆ (f, 0)
= e− j β(ω)L, β(ω) = −β(−ω); hc(t) =

∫ +∞

−∞
h̆c(f) e j 2πft df. (2.12)

As mentioned before, the propagation constant β is often replaced by the effective modal refractive index
ne. The normalized frequency V combines the quantities core radius a, optical angular frequency ω, core
refractive index n1, cladding refractive index n2, and relative refractive index difference ∆,

ne =
β

k0
, k0 =

ω

c
=

2π

λ
, V = ak0n1

√
2∆, ∆ =

n2
1 − n2

2

2n2
1

≈
∆�1

n1 − n2

n1

. (2.13)

18In telecommunication and electronics, baud (pronounced ["bO:d], unit symbol Bd) is synonymous to symbols per second,
the unit of the symbol rate. Sometimes a symbol is denoted as a “baud”, so that symbol rate and baud rate would be the same.
However, if the meaning of the unit Bd is agreed upon, to talk of a baud rate (literally meaning ( symbols/ s)/ s = Bd/ s)
instead of naming it a symbol rate does not make sense.

19See Ref. 8 on Page 2. First page, first column, statement 3) The Channel
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For narrow-banded optical spectra it is useful to expand β(ω) in a Taylor series around the carrier
frequency f0 = c/λ0 = ω0/(2π) and retain terms up to the third order, that is,

β(ω) ≈ β(0)
0 + (ω − ω0)β

(1)
0 +

(ω − ω0)2

2!
β

(2)
0 +

(ω − ω0)3

3!
β

(3)
0 , (2.14)

β
(i)
0 =

diβ(ω)

dωi

∣∣∣∣∣
ω=ω0

, β0 := β
(0)
0 , ∆ω = ω − ω0 , ∆f = ∆ω/(2π).

We identify the modal phase velocity vp, the group velocity vg and the group delay tg (propagation
length z = L, group refractive index ng), which is related to the first-order chromatic dispersion C and
its derivatives (e. g., D), Eq. (2.17),

vp =
ω0

β
(0)
0

, v−1
g =

tg
L

=
ng
c

= β
(1)
0 ,

1

L

dtg
dω

= β
(2)
0 ,

1

L

d2 tg
dω2

= β
(3)
0 . (2.15)

The length-related group delay time difference ∆tg/L of two signals propagating in the same funda-
mental mode at optical carriers, which differ in λ by ∆λ, can be approximately written with the help
of the normalized propagation constant B =

(
β2 − n2

2k
2
0

)/ (
n2

1k
2
0 − n2

2k
2
0

)
≈ (β − n2k0)/ (n1k0 − n2k0),

assuming weak guidance ∆� 1,

∆tg/L = [tg(λ+∆λ)− tg(λ)] /L = C∆λ = (M +W )∆λ ,

M = Ms =
1

c

dnsg
dλ︸ ︷︷ ︸

material
dispersion

(s = 1 or 2), W = −n1g − n2g

cλ
V

d2(V B)

dV 2︸ ︷︷ ︸
dispersion

factor

(2.16)

The first-order material dispersion coefficients in core (M1) and cladding (M2 ≈M1) are assumed to be
of similar value. The chromatic dispersion is expressed by the first-order coefficient C (unit ps / (km nm))
for a fixed reference wavelength λ1. We extend Eq. (2.16) by one more term and define a second-order
dispersion coefficient D (unit ps /

(
km nm2

)
),

∆tg/L = C ∆λ+D (∆λ)2 + . . . , C = M +W, (2.17a)

C =
1

L

d tg
dλ

= −2πc

λ2
0

β
(2)
0 , (2.17b)

C(λC) = 0 , λC first-order dispersion zero wavelength, (2.17c)

D =
1

L

1

2

d2tg
dλ2

=
(2πc

λ2
0

)2
β

(3)
0 +

4πc

λ3
0

β
(2)
0 . (2.17d)

When for a certain reference wavelength λ1 = λC the first-order chromatic dispersion C becomes zero,
and the total dispersion is determined by the second-order dispersion coefficient D.

With a slight re-ordering of Eq. (2.17a) we can define a wavelength-dependent chromatic dispersion
factor Cλ(λ) = C +D∆λ which is approximated by a straight line near the reference wavelength λ1,

∆tg/L = Cλ(λ)∆λ = (C +D∆λ) ∆λ = C ∆λ+D (∆λ)2 , D =
dCλ(λ)

dλ
. (2.17e)

Comparing D in Eq. (2.17a), (2.17e) could lead to confusion because of the factor 1/2. In Eq. (2.17a),
the dispersion coefficients C ≡ C(λ1), D ≡ D(λ1) are constants of the Taylor expansion for the function
tgm(λ) at a certain reference wavelength λ = λ1. Therefore, dC(λ1)/dλ = 0 holds by definition, and
D(λ1) 6= dC(λ1)/ dλ. On the other hand, the dispersion function Cλ(λ) may be linearly expanded, and
its so-called dispersion slope D = dCλ(λ)/ dλ|λ1

is then well defined.
We model the light source by an analytic signal as(t), which is modulated with a (possibly complex)

signal s (t),

as (t) = As (t) e jω0t, As (t) = s (t) a (t) , (2.18)
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This light source excites a waveguide mode Ψm(~r ); the mode number m characterizes any set of appropri-
ate mode numbers, e. g., m =̂ (ν, µ) for a fibre. The mode coupling coefficient is cm, and the normalization∑
m |cm|2 = 1 holds. The scalar time-dependent field and its Fourier transform at the waveguide input

z = 0 read in cylindrical coordinates

Φm(t, r, ϕ, 0) = cmΨm(r, ϕ) as(t), Φ̆m(f, r, ϕ, 0) = cmΨm(r, ϕ) ăs(f). (2.19)

For the waveguide length z the output signal may be calculated by a convolution of the input signal
with the causal waveguide impulse response hm(t) Eq. (2.12). Further, the spectrum can be written as a

product of the source spectrum ăs(f) and the waveguide transfer function h̆m(f),

Φm(t, r, ϕ, z) = cmΨm(r, ϕ)

∫ +∞

−∞
hm(t1) as(t− t1) dt1 ,

Φ̆m(f, r, ϕ, z) = cmΨm(r, ϕ) h̆m(f) ăs(f), h̆m(f) = e− j βm(ω)z . (2.20)

The transverse field dependence of the eigenmode Ψm(r, ϕ) does not vary significantly with f because
the small frequency dependent changes of the waveguide refractive indices may be usually neglected.
Equation (2.20) establishes a linear relation between the modulation s(t) and the response Φm(t, r, ϕ, z).

2.2.2 Propagation in a nonlinear fibre

Propagation in a nonlinear optical fibre can be approximately described by the so-called nonlinear
Schrödinger20 equation (NLSE) as derived in Appendix A, Eq. (A.34) on Page 181. The following quan-

tities are used: Impulse envelope A(T, z) in a retarded time frame T = T (t, z) := t − β(1)
0 z = t − z/vg

that moves along with the impulse (Eq. (A.26)), fibre nonlinear coefficient γ (Eq. (A.25)), and linear fibre
power attenuation coefficient α,

∂A(T, z)

∂z
= j

β
(2)
0

2

∂2A(T, z)

∂T 2
− j γ |A(T, z)|2A(T, z)− α

2
A(T, z). (2.21)

In general, a simple transfer function as in Eq. (2.12) cannot be specified. In the case of zero linear attenua-
tion α = 0, Eq. (2.21), (A.34) resembles the well-known Schrödinger equation of quantum mechanics with

a nonlinear (quadratic) potential term j γ |A(T, z)|2A(T, z). Thus, it is called the nonlinear Schrödinger
equation21,22 (NLSE). If during the propagation of a light signal its loss is continuously compensated by
gain, then the power loss constant can be set actually to zero, α = 0. For including random perturbations
by, e. g., ASE noise of optical amplifiers, a random field23 − jNASE(T, z) can be added on the right-hand
side of Eq. (2.21), (A.34).

The parameters of a standard single-mode fibre24 (SSMF) are listed in Table 2.1. For the definition
of symbols and their context see also Appendix A.4 on Page 178 ff.

2.2.3 Shannon’s channel capacity and spectral efficiency

A quick and intuitive way in understanding the meaning of Shannon’s channel capacity formula refers to
Eq. (2.9) on Page 17. This maximum possible bit rate Rb for a real Nyquist signal with symbol period
Ts = 1/ (2B), symbol rate Rs = 1/Ts, sampling rate Fs = Rs = 2B, and bandwidth B is according

20Erwin Schrödinger, ?Vienna (Austria) 12.08.1887, †Vienna (Austria) 04.01.1961. Austrian theoretical physicist who
contributed to the wave theory of matter and to other fundamentals of quantum mechanics. He shared the 1933 Nobel Prize
for Physics with the British physicist P. A. M. Dirac.

21See Ref. 17 on Page 6, Sect. 2.3.1 Eq. (2.3.27) Page 43
22Boyd, R. W: Nonlinear optics. 3. Ed. San Diego: Academic Press 2008. Section 7.5.2, Eq. (7.5.32)
23R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel: Capacity limits of optical fiber networks. J. Lightw.

Technol. 28 (2010) 662–701
24R.-J. Essiambre, R. W. Tkach, R. Ryf: Fiber nonlinearity and capacity: Single-mode and multimode fibers. In: Kaminow,

I. P.; Li, Tingye; Willner, A. E. (Eds.): Optical Fiber Telecommunications VI B. Systems and Networks, 6th Ed. Elsevier
(Imprint: Academic Press), Amsterdam 2013, Chapter 1, pp. 1–43
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Parameter Symbol SSMF data

Chromatic dispersion C 17 ps
km nm

Dispersion slope D 0.07 ps
km nm2

Attenuation factor per length a/L 0.2 dB
km

Nonlinear refractive index nI2 2.5× 10−20 m2

W

Effective area Aeff 80µm

Nonlinear coefficient γ 1.27 W−1 km−1

Operating wavelength λ0 1.55µm

Operating frequency f0 193.41 THz

Table 2.1. Standard single-mode fibre (SSMF) parameters [after Ref. 24 Table 1.1]

to Eq. (2.9) on Page 17 Rb = B log2

(
M2
)
≈ B log2 (1 + γ). In more general terms: If a channel has

the bandwidth B = 2B and is able to transport a real Nyquist signal with a certain SNR ≡ γ that
suffices for “error-free” reception, then the so-called channel capacity Creal for real signals equals the
maximum possible bit rate Creal = Rb ≈ 1

2B log2 (1 + γ). The spectral efficiency C ′real = CrealT then
denotes how many bit are transmitted per symbol. The symbols repeat with a period (observation time)
T = 1/B = 1/ (2B) = Ts, and we find C ′real = 1

2 log2 (1 + γ) ≈ log2M . — In the following, we first
address a linear glass fibre channel, before taking account of the nonlinear properties of a fibre.

Linear Shannon limit

In Shannon’s rigorous formulation, a linear communication channel transports a Gaussian distributed
noise field (additive white Gaussian noise, AWGN) with average power Pr in the channel bandwidth B.
Seen from an information-theoretical point of view the signal field is also a Gaussian-distributed random
quantity having the average power Ps. The limiting capacity of a channel is the maximum bit rate that
can be transmitted error-free, taking account of noise, available bandwidth, and constrained power25.

It is remarkable that the capacity can be computed without explicitly considering any specific mo-
dulation, coding, or decoding scheme. Likewise, computation of the capacity does not generally tell us
which specific modulation, coding, or decoding schemes we should use in order to achieve the capacity.
The theory indicates that we must use strong error-correcting codes, and that the decoding complexity
and delay must increase exponentially as we approach the limiting capacity.

We define a channel which transmits complex signals s (t) with an in-phase (I, real part) component
and a quadrature26 phase (Q, imaginary part) component. How this mathematical concept is realized will
be explained in the IQ-modulator section on Page 28 ff. As we saw in Eq. (2.10) on Page 18, signalling
with sinc-shaped Nyquist pulses having complex amplitudes Ψ (iTs) leads to a symbol rate that equals
the signal bandwidth, Rs = B. If not stated otherwise, we assume for the following this type of pulse
shaping, which leads to a rectangular passband spectrum with a width of B. The channel bandwidth
B = B = Rs be adapted to these transmission requirements.

Limiting channel capacity The theoretical limiting (maximum) channel capacity C (unit bit/s) per
polarization for error-free signal transmission, which can be reached only with arbitrarily complicated
encoding techniques including the transmission of complex Nyquist signals, is given by27

C = B log2

(
1 +

Ps
Pr

)
= B log2 (1 + γ) , γ ≡ SNR :=

Ps
Pr
. (2.22)

25J. M. Kahn, K.-P. Ho: Spectral efficiency limits and modulation / detection techniques for DWDM systems. IEEE J.
Sel. Topics Quantum Electron. 10 (2004) 259–272

26The points in phase space describe uniquely all possible states of a system (e. g., the momentum px of a particle moving
in x-direction and its position x). Generally spoken, so-called “quadratures” are quantities that can be used to represent
the real (e. g., x) and the imaginary part (e. g., px) of a complex quantity. A plot of the quadratures against each other is
called a phase diagram. — Here, we plot I vs. Q and name the result a constellation diagram.

27See Ref. 8 on Page 2. Shannon’s paper from 1948 cites the groundbreaking work of Nyquist (Ref. 11 on Page 3, 1924,
Ref. 12 on Page 3, 1928) and Hartley (Ref. 16 on Page 17, 1928).
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We cannot go into the details of the derivation of Eq. (2.22). Instead, we refer to Eq. (2.9) on Page 17,
where a similar expression was made plausible. It is obvious that for a constant C the channel’s SNR and
its bandwidth B can be exchanged: The more elaborate the coding is, the less channel bandwidth B is
required, but the higher the channel’s SNR must be. This is also true for the spectral efficiency which is
discussed in the following.

We further remark that Eq. (2.22) implies classical noise in one transverse mode and one polarization
only. As soon as both classical and quantum noise are involved as is the case with amplified sponta-
neous emission (ASE) noise of an optical amplifier28,29,30,31,32,33, the Shannon relation must be properly
interpreted. We will return to this problem when treating noise in more detail.

Spectral efficiency If we want to know how many information bits we can transmit per polariza-
tion during an observation time T , we have to calculate the so-called spectral efficiency SE = CT
= BT log2 (1 + γ) (unit bit/s/ Hz; in fact, this “unit” represents a number of bits and is therefore di-
mensionless). The shortest possible observation time for a complex symbol is T = 1/B as specified by
the sampling theorem Eq. (2.4) on Page 15. Thus, the limiting (maximum) spectral efficiency C ′ = C/B
for an AWGN channel describes the maximum number of information bits to be transmitted during the
minimum observation time T = 1/B. For a small SNR an approximation can be given, and we find

C ′ =
C

B
= log2 (1 + γ) , γ = 2C

′
− 1, (2.23)

C ′ ≈ 1

ln 2

(
γ − 1

2
γ2

)
for γ � 1. (2.24)

However, if the observation time T = 1/B becomes longer, i. e., if the actual signal bandwidth B < B is
chosen to be smaller than the channel bandwidth B so that the signal’s information capacity (bit rate)
is only B log2 (1 + γ), then the practical spectral efficiency C ′pract results,

C ′pract =
B log2 (1 + γ)

B
=
B

B
C ′. (2.25)

Equations (2.23) and (2.24) show that limiting channel capacity C and spectral efficiency C ′ tend to zero
with the same order as γ. If for γ � 1 (not a very practical case!) the product B×γ is kept constant, the
limiting channel capacity C remains also constant.

Optical amplifiers in a link contribute ASE noise as will be discussed in more detail in Sect. 5.2.3
on Page 128 ff. With a single-pass power gain Gs, an optical bandwidth BO = B, an amplifier noise
figure F , and with the photon energy wO = hf0 at central frequency f0, the (extractable) ASE noise
output power of such an amplifier is PASE,x = N0B per polarization and mode, where the noise power
spectral density is N0 = (Gs − 1)FwO. This optical noise power can be expressed in terms of minimum-
uncertainty quantum fluctuations, characterized by a (non-extractable34) minimum quantum noise power
Pr qu = wOB per polarization and mode, Eq. (5.67) on Page 128). The corresponding noise power spectral
density is N0 qu = wO. In the following, we understand N0 to be the actual noise power spectral density
of the link under consideration.

We define the energy per symbol by dividing the signal power by the symbol rate, Ws = Ps/Rs =
Ps/B, and the energy per bit by relating the energy per symbol to the number of bits C ′ that are

28Gordon, J. P.: Quantum effects in communication systems. Proc. Inst. Radio Eng., 50 (1962) 1898–1908
29G. Grau: Rauschen und Kohärenz im optischen Spektralbereich. In: W. Kleen, R. Müller (Eds.): Laser. Berlin: Springer-

Verlag 1969. Eq. (9.2/21) on Page 476
30Helstrom, C. W., Liu, J. W. S., Gordon, P.: Quantum mechanical communication theory. Proc. IEEE 58 (1970) 1578–

1598
31Helstrom, C. W.: Capacity of the pure-state quantum channel. Proc. IEEE 62 (1974) 140–141
32J. R. Pierce: Optical channels: Practical limits with photon counting. IEEE Trans. Commun. COM-26 (1978) 1819–1821
33D. O. Caplan: Laser communication transmitter and receiver design. J. Opt. Fiber. Commun. Rep. 4 (2007) 225–362
34“Non-extractable power” means that it stands for a quantum uncertainty, and therefore cannot be extracted from the

system: You cannot fry eggs with this power. — With the “extractable” ASE noise power, however, you can!
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transmitted per symbol, Wb = Ws/C
′. With these definitions, we write the SNR γ and the SNR per bit

γb in different forms,

γ ≡ SNR :=
Ps
Pr

=
Ps
N0B

=
Ws

N0
, Ws =

Ps
B
, (2.26)

γb ≡ SNRb :=
Wb

N0
=

γ

C ′
=

2C
′ − 1

C ′
, Wb = NPb hf0 =

Ws

C ′
. (2.27)

The energy per bit Wb divided by the energy per photon hf0 equals the number of photons per bit
NPb. If we had minimum-uncertainty quantum fluctuations only, N0 = N0 qu = wO = hf0, SNRb would
correspond to the photon number per bit, γb = NPb. For the limits of large and small spectral efficiencies
we find35 from Eq. (2.27)

γb ≡ SNRb =

{
2C
′/
C ′ for C ′ � 1 ,

1+C′ ln 2+ 1
2 (C′ ln 2)

2−1

C′ = ln 2
(
1 + 1

2C
′ ln 2

)
for C ′ � 1 .

(2.28)

The SNR per bit assumes a minimum value γ
(min)
b = ln 2 ≈ 0.693, γ

(min)
b dB = 10 lg (ln 2) = −1.58 dB for a

spectral efficiency of C ′ → 0. This result is plausible and means that a minimum energy per bit is needed
to transmit information over an AWGN channel with an ever so small spectral efficiency. The channel
capacity C = BC ′ would then approach zero if not for an unphysical channel bandwidth B → ∞. From
the first order approximation Eq. (2.28), the spectral efficiency can be written as

C ′ ≈ 2

(ln 2)
2

(
γb − γ(min)

b

)
≈ 4.16× (γb − 0.693) for C ′ � 1 . (2.29)

If the channel bandwidth B increases, the channel capacity increases indefinitely according to Eq. (2.23).
However, this assumes that the SNR remains constant. This is not true in practice because the noise
power spectral density N0 is essentially frequency-independent. In this case, the limiting channel capacity
Eq. (2.22) and the limiting spectral efficiency Eq. (2.23) can be re-written (ln(1 + x)≈x for−1<x≤+1),

C = B log2

(
1 +

Ps
N0B

)
=
B

ln 2
ln

(
1 +

Ps
N0B

)
, (2.30)

lim
B→∞

C =
1

ln 2

Ps
N0
≈ 1.44× Ps

N0
, lim

B→∞
C ′ =

1

ln 2

Ws

N0
≈ 1.44× Ws

N0
, (2.31)

C ′ = log2

(
1 +

Ps
N0B

)
= log2

(
1 +

Ws

N0

)
= log2

(
1 +

C ′Wb

N0

)
= log2 (1 + C ′γb) , (2.32)

γb =
2C
′ − 1

C ′
, for quantum limit, NPb =

Wb

N0
and N0 = hf0: NPb = γb . (2.33)

The spectral efficiency C ′ as a function of the SNRb along with various approximations of C ′ are dis-
played36,37 in Fig. 2.4(a). This type of graph is especially useful, if different modulation formats are to be
compared38. Figure 2.4(b) shows that for minimum SNRb requirements a modulation format like pulse
position modulation (PPM) should be preferred (sensitivity-constrained), e. g., for deep-space wireless
communication where a few photons per bit NPb = SNRb must suffice. This comes at the cost of a low
spectral efficiency. Alternatively, a modulation format with highest spectral efficiency could be chosen,
e. g., phase-shift keying with 64 different phases (64PSK), which would be suitable for long-haul commu-
nication over fibres with a densely crowded spectrum (capacity-constrained). This comes at the cost of
more stringent SNRb-requirements, i. e., larger transmitting powers. A selection of modulation formats
will be explained in more detail in Sect. 2.4 on Page 31.

35Expansion of an exponential: ax = ex ln a ≈ 1 + x ln a
1!

+
(x ln a)2

2!
+ . . . for x ln a� 1.

36R.-J. Essiambre, R. W. Tkach, Capacity trends and limits of optical communication networks. Proc. IEEE 100 (2012)
1035–1055

37See Ref. 24 on Page 20
38P. J. Winzer: Modulation and multiplexing in optical communications. Conf. on Lasers and Electro-Optics (CLEO /

IQEC 2009), Baltimore (Maryland), USA, May 31–June 05, 2009. Tutorial Paper CTuL3
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(a) Limiting spectral efficiency SE ≡ C′ as a function of
SNR per bit SNRb [after Fig. 1.4 of Ref. 24 on Page 20]

(b) Spectral efficiency of various modula-
tion formats [after Ref. 38 on Page 23]

Fig. 2.4. Shannon limit for the spectral efficiency C′ ≡ SE in one polarization as a function of the signal-to-noise power
ratio per bit SNRb dB = 10 lg (SNRb). For the quantum-limited case, N0 = hf0 in Eq. (2.33), the SNRb corresponds to
the number of photons per bit. (a) The inset gives a few approximations to SNRb(C

′) of Eq. (2.27). The SNRb, at
which a specifically chosen system operates (marked with F), is related to the minimum SNR

(min)
b and expressed in

dB, ∆SNRb dB = SNRb dB− SNR
(min)
b dB . (b) Trade-off between spectral efficiency and sensitivity (small SNRb) of various

modulation formats limited by AWGN. Modulation formats (bright: theoretical limits; faint: experimental results) for a
7 % overhead code at a pre-FEC BER = 2× 10−3 (squares: (256,64,32,16,8,4)PPM; triangles: (2,4,8,16,32,64)PSK; circles:
(4,16,64,128,256)QAM; 4PSK≡QPSK =̂ 4QAM; diamonds: OOK)

Nonlinear Shannon limit

So far we had seen from Eq. (2.32) on Page 23 that for a linear channel the spectral efficiency increases
logarithmically with SNRb. However, this is not true if fibre nonlinearities come into play and wave
propagation has to be described by the nonlinear Schrödinger equation (2.21) on Page 20. Because of the
usual WDM operation, numerous signals in multiple WDM channels propagate simultaneously on a fixed
frequency grid, see Table 1.2 on Page 5.

Consequently, the total power guided in a single-mode fibre increases, and fibre nonlinearities like
four-wave mixing (FWM), cross-phase mixing (XPM) and self-phase modulation (SPM) become more
and more important (FWM and SPM, see Appendix Page 177); for XPM, the intensity in one WDM
channel changes the refractive index and therefore the optical phase in neighbouring WDM channels).
The nonlinearities affect the signal itself, but the nonlinear WDM crosstalk adds also more “noise” to
neighbouring WDM channels the larger the intensity becomes.

Therefore it is to be expected that the bit error ratio (BER, bit error probability), which first reduces
with increasing SNR because of obvious reasons, reaches a minimum and starts increasing for larger
WDM channel powers, i. e., for larger SNR. This is illustrated by simulation results39 displayed in Fig.
2.5(a). A transmission span consists of a SSFM transmission fibre (Table 2.1 on Page 21), a dispersion
compensating fibre (equalization) and an ideal optical amplifier with a noise figure F = 2, FdB = 3 dB.
Up to ns = 4 spans are concatenated for a maximum transmission distance of 203 km. A number of 32
WDM channels spaced 100 GHz apart are fed with 40 Gbit/s pseudo-random data in non-return-to-zero
(NRZ) on-off keying (OOK) format. Further details are specified in the figure caption.

The linear Shannon limit assumes coding and error correction to be so good that effectively the BER
becomes small enough to name the channel “error-free”. If with increasing nonlinear noise the BER would
deteriorate such that BER ≤ 0.5, it would be just chance how we interpreted the transmitted signal, and
error correction cannot help any more. The definition of SNR does not include nonlinear noise. So it

39T. Kremp, W. Freude: DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet
collocation method. Proc. 7th Intern. Conf. on Optoelectronics, Fiber Optics & Photonics (Photonics 2004), Kochi, India,
November 9–11, 2004
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(a) Span setup and BER simulations for
32 WDM channels and ns = 1 . . . 4 spans
[after Ref. 39 on Page 24]

(b) Limiting spectral efficiency simulations for 5 WDM channels sep-
arated by ∆f = 100 GHz and span lengths as specified in the inset
[after Fig. 1.10 of Ref. 24 on Page 20]

Fig. 2.5. Simulation of BER as a function of launch power per channel, and simulation of spectral efficiency as a function
of SNR ≡ γ for nonlinear WDM systems with various transmission distances. (a) BER vs. channel power for 32 WDM
channels. Non-return-to-zero (NRZ) data with bit rate 40 Gbit, channel grid spacing 100 GHz, pseudo-random bit sequence
(PRBS) with 1 024 bit length per channel, 0.45 mW power per channel, one optical amplifier per span with a theoretically
minimum noise figure F = 2 (inversion factor nsp = 1). Solid lines (——) include dispersion slope (β

(3)
0 ), self-steepening and

Raman effect, broken lines (– – –), (— —) do not include the aforementioned types of nonlinearities. Solid-line asymptotes
(——) without nonlinearities��HHNL and without��XXASE noise, respectively. The BER numbers are not representative for a
practical system, because usual optical amplifier noise figures are in the range FdB = 4 . . . 7 dB. (b) Limiting nonlinear
spectral efficiency SE ≡ C′ vs. SNR for a symbol rate Rs = 100 GBd, channel grid spacing 100 GHz, and for various
transmission lengths as noted in the inset. If not stated otherwise, the SSMF data of Table 2.1 on Page 21 are assumed.
Fibre loss is continuously compensated by Raman gain. Linear Raman amplifier noise has been computed assuming a
local gain equal to the local loss with an optimum inversion factor of nsp = 1. Raman excess noise is neglected. Four
interfering channels, two on each side of the channel of interest, have been considered, with no guard band in-between. The
monotoneously rising solid line (——) represents the linear Shannon limit.

is understandable that with increasing SNR (increasing launch power) the nonlinear Shannon capacity,
and consequently the associated spectral efficiency displayed in Fig. 2.5(b), reaches a maximum40,41. For
larger SNR, the SE starts decreasing.

2.3 Modulation

Modulation42 denotes the method by which an analogue or digital information signal is imprinted onto
an (in our case: optical) carrier wave. The simplest modulation would be to switch the carrier (e. g., as
provided by a laser) by turning the laser’s power supply on and off. For a semiconductor laser this would
be the injection current, and it can be switched43 such that the light pulses follow each other at a bit rate
of 40 Gbit/s. For a number of reasons, more elaborate modulation schemes are frequently used, where the
laser operates as a continuous-wave (CW) source, and a modulator external to the laser influences the

40A. Mecozzi, R.-J. Essiambre: Nonlinear Shannon limit in pseudo-linear coherent systems. J. Lightw. Technol. 30 (2012)
2011–2024

41See Ref. 24 on Page 20
42In its most general sense, modulation also includes coding to prevent transmission errors from occurring (line coding,

channel coding), or to provide means for correcting already occurred transmission errors (error correcting coding, also
forward error correction, FEC).

43Fraunhofer Heinrich Hertz Institute, Berlin, May 2013.
http://www.hhi.fraunhofer.de/fileadmin/Lasers/40Gbit-Laser-2013-05.pdf
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light emission. These concepts are explained in the next sections.

Modulation is a fundamentally nonlinear process where two or more temporal signals interact. Here, we
concentrate on the interaction of electromagnetic fields only, but many other interactions, for instance with
acoustic waves (photon-phonon interaction) are interesting as well. The signals’ spectra can be located
at widely different or at rather similar centre frequencies. We talk of modulation, if a baseband signal
covering a spectral region of, say, 0 . . . 100 GHz interacts with a carrier at a widely different frequency
of, say, 193.41 THz (vacuum wavelength 1.55µm). We name the process mixing, if spectra interact that
are centred at comparable frequencies, say, at 193.41 THz (1.55µm) and 2 × 193.41 THz = 386.82 THz
(0.775µm). A number of such interactions (e. g., four-wave mixing) are mentioned in Appendix A.3.3 on
Page 177 ff.

The lowest-order nonlinearity which must be involved for an interaction of electromagnetic fields is a
product term of the contributing temporal signals. The physical effects which are employed to perform
such an action may differ widely, and they could be based on absorption (as with a photodiode, Eq. (1.1) on
Page 2) or on lossless parametric effects (as with a nonlinear fibre, Eq. (2.21)on Page 20, Appendix (A.3.3)
on Page 177), but the basic action of modulator and mixer are not different by principle.

In electrical engineering the somewhat misleading terms “multiplicative mixing” and “additive mix-
ing” are used. Multiplicative mixing relies on a physical process which actually multiplies two quantities,
s1 (t) s2 (t). As an example, a voltage s1 (t) could be applied between source and gate of a field effect
transistor (FET), and s2 (t) could control the voltage between source and drain44. With additive mixing,
we first superimpose the two signals, s1 (t) + s2 (t), and then apply a nonlinear operation (e. g., squaring)
to the sum,

[s1 (t) + s2 (t)]
2

= s2
1 (t) + s2

2 (t) + 2

mixing︷ ︸︸ ︷
s1 (t) s2 (t) . (2.34)

Obviously, there is a mixing term, namely the product s1 (t) s2 (t).

2.3.1 Analytic signals and phasors

For a better understanding, let us disregard wave propagation and consider two real electrical signals s1,2

with real amplitudes â1,2, phases ϕ1,2, and angular frequencies ω1,2 = 2πf1,2,

s1 (t) = â1 (t) cos [ω1t+ ϕ1 (t)] , s2 (t) = â2 (t) cos [ω2t+ ϕ2 (t)] . (2.35)

By inspecting the Fourier transform of any real signal s (t) it is to be seen that its spectrum s̆ (f) has the
symmetry property

s̆ (f) = s̆∗ (−f) if s (t) is real. (2.36)

We now introduce the complex analytic time-dependent amplitude a (t) with real part a(t) = <{a (t)},
modulus â (t) and real phase ϕ (t). The spectrum of a (t) is causal in the frequency domain by definition,
and is related to the two-sided spectrum of a(t),

a (t) = â (t) e jϕ(t), ă (f) =

∫ +∞

−∞
a (t) e− j 2πft dt, ă (f < 0) = 0 , ă (f > 0) = 2

∫ +∞

−∞
a (t) e− j 2πft dt .

(2.37)

For a positive time dependency, see Eq. (1.4) on Page 8, the analytic signal s (t) and its real part sr (t)
as in Eq. (2.35) read

s (t) = a (t) e jω0t, a (t) = â (t) e jϕ(t), sr (t) = <{s (t)} = â (t) cos [ω0t+ ϕ (t)] . (2.38)

44S. Preu, S. Kim, P. G. Burke, M. S. Sherwin, A. C. Gossard: Multiplicative mixing and detection of THz signals with a
field effect transistor. Conf. on Lasers and Electro-Optics (CLEO’12), San Jose (CA), USA, May 8–11, 2012. Paper CTu2B.7
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If the modulus of the analytic amplitude a (t) = â e jϕ(t) is time-independent, it is called a “phasor”45

(German Zeiger). The time evolution of the phasor s (t) = e jω0t is illustrated in Fig. 2.6.
If the phase depends linearly on time, ϕ (t) = ωat, it is easy to see that the spectrum ă (f) =

â δ (f − fa) of a (t) as well as that of the analytic time signal s (t) is causal,

s(t) = â e jωat e jω0t ◦—• s̆(f) =

∫ +∞

−∞
s(t) e− j 2πft dt = â δ (f − (f0 + fa)) . (2.39)

An analytic signal s (t) is generated from its real part sr(t) = <{s(t)} or from its imaginary part si(t) =
={s(t)} by a Hilbert transform, i. e., by applying Cauchy’s principal value46 integral, or by a convolution
(∗) with 1/ (πt),

si(t) = H{sr(t)} =
1

π
P
∫ +∞

−∞

sr(t
′)

t− t′
dt′ = sr(t) ∗

1

πt
, (2.40a)

sr(t) = H−1{si (t)} = − 1

π
P
∫ +∞

−∞

si(t
′)

t− t′
dt′ = −si(t) ∗

1

πt
, (2.40b)

P
∫ +∞

−∞

f(x)

x− x0
dx = lim

ε→0

(∫ x0−ε

−∞

f(x)

x− x0
dx+

∫ +∞

x0+ε

f(x)

x− x0
dx

)
= lim
ε→0

∫ +∞

−∞
f(x)

x− x0

(x− x0)2 + ε2
dx.

(2.40c)

Fig. 2.6. Evolution of an analytic signal s (t) = e jω0t = sr (t) + j si (t) = cosω0t + j sinω0t with time. Projection on the
horizontal plane shows the real part sr (t), projection on the vertical plane displays the imaginary part si (t).

2.3.2 Mixing and modulation

To simplify the setup, we assume in Eq. (2.35) on Page 26 that only the amplitude and phase of s2 (t)
depend on time, while we choose â1 = constt and ϕ1 = 0 for s1 (t). The multiplication s12 = s1s2 (usually
understood as a mixing process) results in two signal spectra centred at the difference f2− f1 and at the
sum frequency f1 + f2, respectively,

s12 (t) =
â1â2 (t)

2
{cos [(ω2 − ω1) t+ ϕ2 (t)] + cos [(ω1 + ω2) t+ ϕ2 (t)]} (2.41)

=
â1

4

{[
a2 (t) e+ j(ω2−ω1)t +a∗2 (t) e− j(ω2−ω1)t

]
+
[
a2 (t) e+ j(ω1+ω2)t +a∗2 (t) e− j(ω1+ω2)t

]}
.

The Fourier transform of the real function s12 (t) yields the spectrum s̆12 (f) = s̆∗12 (−f),

s̆12 (f) = s̆1 (f) ∗ s̆2 (f) =
â1

4
{ [ă2 (f − (f2 − f1)) + ă∗2 (−f − (f2 − f1))]

+ [ă2 (f − (f1 + f2)) + ă∗2 (−f − (f1 + f2))] }. (2.42)

For the case of modulation and depending on the physical quantity to be modified, we talk of amplitude
modulation (AM, â2 (t)), phase modulation (PM, ϕ2 (t)) or frequency modulation (FM, dϕ2 (t)/ dt).

45A phasor (German Zeiger) is a “vector” in the complex plane. Implicitly we assume that the real part is drawn
horizontally and increases to the right, while the imaginary part is drawn vertically and increases in the upward direction.
A phasor is displayed as an arrow, pointing from the base point (also named origin, tail, or initial point) to the endpoint
(also named tip, head, or final point). The length of the phasor is proportional to its magnitude. The phasor’s projection
to the horizontal (vertical) axis gives its real (imaginary) part. For an example, see Fig. 2.8(a) on Page 31.

46Symbol P because of principal value (Latin valor principalis)
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Amplitude and phase for each differently polarized wave can be modulated independently, while phase
modulation and frequency modulation depend on each other. Note that an amplitude â (t) is always a
non-negative quantity, â (t) ≥ 0. If the quantity â (t), regarded as a multiplicator only, could change its
sign, e. g., if â (t) ∈ {+1,−1}, this would be equivalent to a phase modulation ϕ (t) = {0, π} for a constant
amplitude â = 1.

Transmission and reception of a complex signal

A physical channel can transmit only physical quantities, i. e., signals that are measurable, e. g., with a
voltmeter. The natural choice is then to map these signals to numbers which are real in the mathematical
sense. However, at the transmitter, two independent data streams can be regarded as real and imaginary
part of a complex signal, and both its real constituents can be transmitted. On reception, real and
imaginary parts can be recombined to form a complex number. In this sense a channel is able to transmit
also complex data signals.

We start with the real signal sr (t) from Eq. (2.38). A simple trigonometric manipulation leads to the
definition of in-phase signal47 I (t) and quadrature signal Q (t), which now serve as the representatives
of the encoded data instead of amplitude â (t) and phase ϕ (t),

sr (t) = <
{
â (t) e jϕ(t) e jω0t

}
= â (t) cos [ω0t+ ϕ (t)] = â (t) cosϕ (t) cosω0t− â (t) sinϕ (t) sinω0t

= I (t) cos (ω0t)−Q (t) sin (ω0t) for I (t) = â (t) cosϕ (t) , Q (t) = â (t) sinϕ (t) , (2.43)

â (t) =
√
I2 (t) +Q2 (t), tanϕ (t) =

Q (t)

I (t)
.

The naming of I (t) and Q (t) is derived from the fact that the real part â cosϕ of the complex amplitude
â e jϕ is in phase with the carrier phasor48 e jω0t of cos (ω0t), while the imaginary part â sinϕ is in phase
with the carrier phasor − j e jω0t = e j(ω0t−π/2) of sin (ω0t) that points at right angles (“is in quadrature”)
with respect to the phasor of cos (ω0t), see also Fig. 2.6 on Page 27.

Equation (2.43) provides a simple recipe how to transmit a complex signal: First, take the in-phase
component I (t) and let it mix (“multiply it”) with a carrier cos (ω0t). Second, let the quadrature com-
ponent Q (t) mix with a carrier sin (ω0t) that lags cos (ω0t) in phase by 90 ◦. Third, subtract Q (t) sinω0t
from I (t) cosω0t. As a reminder: I (t) and Q (t) are not necessarily non-negative, and therefore this
process cannot be named amplitude modulation. The described procedure reproduces the action of a
so-called IQ-mixer, which can be used either for modulation or for demodulation.

IQ-mixer

The schematic of an IQ-mixer and of a complex mixer as modulator or demodulator for complex data is
shown in Fig. 2.7. The mixers are represented by multiplier symbols

⊗
. Appropriate filters (not drawn) at

the mixer outputs select the frequency components of interest. If the mixer symbol in an IQ-demodulator
stands for a photodetector, the remarks after Eq. (5.115) on Page 141 have to be observed: In this case
and even without filtering, no harmonics of the (optical) carrier appear at the electrical mixer output.

Figure 2.7(a) displays an IQ-modulator for the real part ar (t) and the imaginary part ai (t) of a
complex band-limited data signal a (t) = ar (t) + j ai (t) with spectrum ă (|f | > B) = 0, where B < f0.
The local oscillator (LO) supplies the two mixers with orthogonal carriers + cosω0t and + sinω0t. Both
modulated carriers are combined (symbol Σ), either by subtraction (Σ =̂ diff =̂ USB, this is assumed
here) or by addition (Σ =̂ sum =̂ LSB). After subtracting the mixer outputs at node Σ, we have the real
part of the complex signal Eq. (2.39) on Page 27 which is then transmitted,

sr (t) = <
{
a (t) e jω0t

}
= ar (t) cosω0t− ai (t) sinω0t , a (t) = ar (t) + j ai (t) . (2.44)

This action is compactly described in Fig. 2.7(c) with a complex mixer and using complex quantities.

47Not to be mixed up with an optical intensity or a current that are denoted by the same symbol.
48For an explanation of phasors, see Footnote 45 on Page 27
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(a) IQ-modulator for encoding real and imaginary
data on two orthogonal carriers (Σ=̂subtract)

(b) IQ-demodulator for
complex data (Σ=̂split)

(c)Modulation of a complex
carrier with complex data

(d)Demodulation
of complex data

Fig. 2.7. IQ-mixer and complex mixer as modulator or demodulator for complex data. The phase shifter boxes − π/ 2 (or
π/ 2) stand for a phase retardation (or advancement) of the type exp [ j (ω0t− π/ 2)] (or exp [ j (ω0t+ π/ 2)]). Appropriate
filters (not drawn) at the mixer outputs select the frequency components of interest. If the mixer symbols in an IQ-
demodulator represent photodiodes, no harmonics of the optical carrier appear at the electrical mixer outputs, even without
filtering. (a) IQ-modulator for real part ar (t) and imaginary part ai (t) of a complex data signal a (t) = ar (t)+j ai (t). The
local oscillator (LO) supplies the two mixers (real multipliers, symbol ⊗) with orthogonal carriers + cosω0t and + sinω0t.
Both modulated carriers are combined (symbol Σ), either by subtraction (Σ =̂ diff =̂ USB, this is assumed here) or by
addition (Σ =̂ sum =̂ LSB). If real data m (t) determine a specific analytic signal a (t) = m (t) (cosωa + j sinωat), we
can generate single sideband spectra: When subtracting the mixer outputs as assumed in (a), the upper sideband (USB)
signal mUSB (t) = m (t) cos (ω0 + ωa) t results. If the two mixer outputs are added, the lower side band (LSB) is generated,
mLSB (t) = m (t) cos (ω0 − ωa) t. Therefore an IQ-mixer serves also as a single-sideband (SSB) modulator. If ar (t) and
ai (t) represent independent data, the total spectrum (consisting of USB and LSB) is a superposition of the shifted spectra
ăr (f) and ăi (f). After the superposition at Σ, the real part of a complex signal is transmitted, <{a (t) exp ( jω0t)} =
ar (t) cosω0t − ai (t) sinω0t. (b) IQ-demodulator for recovering a complex data signal a (t) = ar (t) + j ai (t) with real
part ar (t) and imaginary part ai (t), which were modulated on two orthogonal carriers cosω0t and sinω0t, repectively. The
incoming signal is split (symbol Σ). The local oscillator (LO) supplies orthogonal carriers + cosω0t and − sinω0t to the two
mixers (real multipliers, symbol ⊗). (c) Complex modulator for encoding a complex data signal a (t) on an analytic carrier
exp (+ jω0t), supplied to the mixer (complex multiplier, symbol ⊗) by a local oscillator (LO). (d) Complex demodulator
for recovering a complex data signal a (t), which was modulated on an analytic carrier exp (+ jω0t). The local oscillator
(LO) supplies the complex conjugate carrier exp (− jω0t) to the mixer (complex multiplier, symbol ⊗).

Spectrum of IQ-modulator output signal The real IQ-modulator output sr (t) = <
{
a (t) e jω0t

}
in Fig. 2.7(a) and Eq. (2.44) has the spectrum

s̆r (f) =

∫ +∞

−∞

1
2

(
a (t) e j 2πf0t +a∗ (t) e− j 2πf0t

)
e− j 2πft dt = 1

2 ă (f − f0) + 1
2 ă
∗ (−(f + f0)) . (2.45a)

The band-limited baseband spectrum ă (|f | > B) = 0 of the complex modulation signal a (t) in Eq. (2.45a)
is shifted to the positive carrier frequency f0, and in inverted and complex conjugate form also to −f0.

Alternatively, we may use the second form of Eq. (2.44), sr (t) = ar (t) cosω0t− ai (t) sinω0t, and find
for the IQ-modulator output spectrum

s̆r (f) =

∫ +∞

−∞
(ar (t) cosω0t− ai (t) sinω0t) e− j 2πft dt = s̆∗r (−f)

= 1
2

(
ăr (f − f0) + j ăi (f − f0)

)
+ 1

2

(
ăr (f + f0)− j ăi (f + f0)

)
. (2.45b)

By comparing Eq. (2.45a) and (2.45b) for positive and negative frequency shifts, we find

ă (f − f0) = ăr (f − f0) + j ăi (f − f0) 6= ă∗(−f + f0) = ăr (f − f0)− j ăi (f − f0) , (2.45c)

ă∗ (−(f + f0)) = ăr (f + f0)− j ăi (f + f0) 6= ă (f + f0) = ăr (f + f0) + j ăi (f + f0) . (2.45d)

Naturally, we have ă (f − f0) 6= ă∗(−(f + f0)), because ă (f − f0) belongs to a complex time signal a (t).
The baseband spectra ăr,i (f) = ă∗r,i (−f) of the real signals ar,i (t) have a lowpass bandwidth B < f0

and comprise correlated positive and negative frequency components in a range −B < f ≤ +B. After
shifting these spectra to the respective carrier frequencies ±f0, the passband spectra of real and imaginary
part ăr,i (f ∓ f0) span a range −B ± f0 < f ≤ +B ± f0 and overlay each other.

It is obvious that the composite spectra ă (f − f0) = ăr (f − f0) + j ăi (f − f0) and ă∗ (−(f + f0)) =
ăr (f + f0) − j ăi (f + f0) likewise span a range of 2B centred at ±f0, but cannot be separated simply
in contributions belonging to ăr (f ∓ f0) and ăi (f ∓ f0). Incoherent square-law detection would not not
help. Instead, we must rely on the fact that ± j ăi (f ± f0) and ăr (f ∓ f0) are orthogonal to each other
(all phases are shifted by π/2), a property which can be exploited with an IQ-demodulator Fig. 2.7(b)
that operates with orthogonal LO signals, see Eq. (2.47).
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Single-sideband modulation Let a real data signal m (t) modulate the subcarrier e jωat having an
angular frequency ωa. The spectral width Bm of m̆ (f) is assumed to be limited to Bm < fa. Then the
real part ar (t) and the imaginary part ai (t) of the analytic signal a (t) = m (t) e jωat are related by a
Hilbert transform Eq. (2.40a) on Page 27.

When an IQ-modulator Fig. 2.7(a) is fed with ar (t) = m (t) cosωat and ai (t) = m (t) sinωat, a single-
sideband (SSB) spectrum is generated: After subtracting the mixer outputs as assumed in Fig. 2.7(a), only
the upper sideband (USB) signalmUSB (t) = m (t) (cosωat cosω0t− sinωat sinω0t) = m (t) cos (ω0 + ωa) t
appears at the output, because the lower sidebands cancel.

If the two mixer outputs are added, the lower side band (LSB) is generated, because the upper side-
bands cancel, mLSB (t) = m (t) (cosωat cosω0t+ sinωat sinω0t) = m (t) cos (ω0 − ωa) t. The modulated
subcarrier a (t) and its (causal) spectrum ă (f) as well as the generated (non-causal) USB spectrum
m̆USB (f) and LSB spectrum m̆LSB (f) can be written as

a (t) = ar (t) + j ai (t) = m (t) (cosωat+ j sinωat) for m (t) real, (2.46a)

ă (f) = m̆ (f − fa) causal if spectral width of m̆ (f) is Bm < fa, (2.46b)

m̆USB (f) = 1
2 [m̆ (f − (f0 + fa)) + m̆ (f + (f0 + fa))] , (2.46c)

m̆LSB (f) = 1
2 [m̆ (f − (f0 − fa)) + m̆ (f + (f0 − fa))] . (2.46d)

If in contrast to the assumption in Eq. (2.46a) the quantities ar (t) and ai (t) represent independent data,
the associated USB and LSB spectra are also independent and cannot cancel, see Eq. (2.45c).

IQ-demodulator An IQ-demodulator is seen in Fig. 2.7(b). It recovers a complex data signal a (t) =
ar (t) + j ai (t) with real part ar (t) and imaginary part ai (t), which were modulated on two orthogonal
carriers cosω0t and sinω0t. The incoming signal is split (symbol Σ). The local oscillator (LO) supplies
orthogonal carriers cosω0t and − sinω0t to the two mixers, the in-phase (I) and quadrature outputs (Q)
of which are

2I (t) = 2 [ar (t) cosω0t− ai (t) sinω0t] cosω0t = ar (t) (1 + cos 2ω0t)− ai (t) sin 2ω0t , (2.47a)

2Q (t) = −2 [ar (t) cosω0t− ai (t) sinω0t] sinω0t = ai (t) (1− cos 2ω0t)− ar (t) sin 2ω0t . (2.47b)

When filters remove the carrier harmonics at 2f0 (or if they are not generated from the beginning, in
case the mixers are realized by photodetectors), the receiver recovers the transmitted signals,

2I (t) = ar (t) , 2Q (t) = ai (t) . (2.47c)

The schematic Fig. 2.7(d) has the same functionality, but uses a complex mixer and complex quantities
for convenience. It is important to note that on reception the complex conjugate of the transmitting
carrier serves as a LO, otherwise the quadrature component changes sign, 2Q (t) = −ai (t).

If a different frequency ω′0 was chosen for the receiver’s LO, the data spectrum would be located at an
intermediate (difference) frequency (IF, German Zwischenfrequenz) ωZ = ω0 − ω′0. The harmonics 2ω0

would then be replaced by the angular sum frequency ω0 + ω′0.

Homodyne and heterodyne reception

The type of reception as discussed in Fig. 2.7, where a receiver LO has the same frequency as and is
(implicitly) phase-locked to the transmitter, is called homodyne49 reception. The transmitted signal is
directly transfered to the baseband. If transmitter and LO frequencies differ, f0 − f ′0 6= 0, we speak of
heterodyne50 reception. Details will be discussed in Sect. 5.4 on Page 140 ff.

49From Greek o‘µóς, same, like, similar, and Greek δύναµις, force, power, strength. — Homodyning requires the LO to
have the same frequency as the transmitted carrier, and a fixed phase relation with it.

50From Greek έ‘ τε% o ς, different, and Greek δύναµις, force, power, strength. — Heterodyning is a radio signal processing
technique invented in 1901 by Canadian inventor-engineer Reginald Fessenden, in which new frequencies are created by com-
bining or mixing two frequencies. Heterodyning is useful for frequency shifting signals into a new frequency range, and is also



2.4. MODULATION FORMATS 31

2.4 Modulation formats

In this section we review a number of important modulation formats, starting with simple analogue
amplitude modulation (AM) and ending with advanced digital quadrature amplitude modulation (QAM).

2.4.1 Analogue modulation formats

Analogue modulation formats were the first to be used in early wireline and wireless transmission. We
present amplitude, intensity and angle modulation, and inspect (vestigial) single-sideband modulation.
Figure 2.11(a) on Page 36 visualizes the temporal signal shapes for some of these modulation formats. The
figure refers in addition to analogue polarization-mode modulation (PolM), where the state of polarization
of an electromagnetic wave is modulated to carry information. Details on the mathematical description
are omitted here.

Amplitude modulation

As the naming suggests, amplitude modulation (AM) modifies the amplitude of an analytic carrier e jω0t

with a modulation signal m (t), which is assumed to be positive real and varies slowly on the scale of

(a) Phasor diagram for a sinu-
soidal AM. The resultant is in
phase with the carrier.

(b) One-sided power spec-
trum for AM with a base-
band spectrum fa1 . . . fa2

(c) One-sided power spectrum for IM. Power detection
recovers the baseband spectrum fa1 . . . fa2. In contrast
to (b), the IM-spectrum is infinitely extended.

Fig. 2.8. Analogue amplitude modulation (AM) and intensity modulation (IM) with real modulation signals. (a) Phasors
in the complex plane (see Footnote 45 on Page 27, origin located at the base point of the carrier phasor) for sinusoidal
AM according to Eq. (2.49a). All phasors rotate counter-clockwise (ccw, in the mathematical positive sense). The carrier
phasor, the upper sideband (USB) phasor and the lower sideband (LSB) phasor rotate with angular velocities ω0, ω0 + ωa
and ω0−ωa, respectively. If the observer rotates with the carrier, the USB phasor would seemingly rotate ccw with angular
velocity ωa, while the LSB phasor would seemingly rotate clockwise (cw) with the same angular velocity ωa. (b) One-sided
schematic AM power spectrum for a non-sinusoidal baseband modulation spectrum extending from frequency fa1 to fa2.
Upper and lower sidebands are related by USB (f) = LSB∗ (−f) , see Eq. (2.48d), (2.48e) (c) One-sided schematic IM
spectrum for a non-sinusoidal baseband modulation spectrum extending from frequency fa1 to fa2. Because the power〈
s2IM r

〉
(t) is modulated in proportion to a modulation signal 1 + pm (t), the amplitude depends on the square-root of the

modulating signal
√

1 + pm (t), so that the spectrum is infinitely extended.

the carrier period 1/ f0. Its spectrum obeys the symmetry condition m̆(f) = m̆∗ (−f) as in Eq. (2.36) on
Page 26. Modulated analytic carrier sAM (t) and its real part sAM r (t) ar written as

sAM (t) = âm (t) e jω0t, m (t) ≥ 0 is real and band-limited, m̆ (|f | > B) = 0, B < f0 , (2.48a)

sAM r (t) = âm (t) cosω0t = 1
2 âm (t)

(
e jω0t + e− jω0t

)
. (2.48b)

involved in the processes of modulation and demodulation. The two frequencies are combined in a nonlinear signal-processing
device such as a vacuum tube, transistor, or diode, usually called a mixer. In the most common application, two signals at
frequencies f1 and f2 are mixed, creating two new signals, one at the sum f1 +f2 of the two frequencies, and the other at the
difference f2−f1. These new frequencies are called heterodynes. Typically only one of the new frequencies is desired, and the
other signal is filtered out of the output of the mixer. [Definition cited after http://en.wikipedia.org/wiki/Heterodyne]
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The spectrum s̆AM r (f) of the real part sAM r (t) of the modulated analytic carrier sAM (t), and the shifted
modulation spectra m̆ (f − f0), m̆ (f + f0) of the positive real band-limited modulation signal m (t) are

s̆AM r (f) = 1
2 â [m̆ (f − f0) + m̆ (f + f0)] = s̆∗AM r (−f) , (2.48c)

m̆ (f − f0) = m̆ (f − f0)|0<f<+f0
+ m̆ (f − f0)|f>+f0

= m̆∗ (−f + f0)|0<f<+f0︸ ︷︷ ︸
LSB (f−f0)

+ m̆ (f − f0)|f>+f0︸ ︷︷ ︸
USB (f−f0)

= m̆∗ (−f + f0) , (2.48d)

m̆ (f + f0) = m̆ (f + f0)|f<−f0 + m̆ (f + f0)|0>f>−f0
= m̆ (f + f0)|f<−f0︸ ︷︷ ︸

LSB (f+f0)

+ m̆∗ (−f − f0)|0>f>−f0︸ ︷︷ ︸
USB (f+f0)

= m̆∗ (−f − f0) . (2.48e)

Upper sideband (USB) and lower sideband (LSB) are related and carry the same information as can be
seen from Eq. (2.48d), (2.48e), USB (f ∓ f0) = LSB∗ (−f ± f0).

For definiteness, we now assume a real sinusoidal modulation m (t) = 1 + m cosωat with angular
frequency ωa = 2πfa and a constant modulation index 0 < m < 1. For the modulated analytic signal
sAM (t), its real part sAM r (t) and the one-sided power spectrum 2

∣∣s̆AM r(f)
∣∣2 = 2ΘsAM (f) we find

sAM (t) = âm (t) e jω0t = â (1 +m cosωat) e jω0t, 0 < m (t) < 1, (2.49a)

= â
[
1 + 1

2m
(
e jωat + e− jωat

)]
e jω0t = â

[
e jω0t + 1

2m
(

e j(ω0+ωa)t + e j(ω0−ωa)t
)]
,

sAM r (t) = â (1 +m cosωat) cosω0t (2.49b)

= â
[
cosω0t+ 1

2m (cos (ω0 − ωa) t+ cos (ω0 + ωa) t)
]
,

2ΘsAM (f) := 2
∣∣s̆AM r (f)

∣∣2 (2.49c)

= 1
2 â

2
{
δ (f − f0) + 1

4m
2
[
δ (f − (f0 − fa))︸ ︷︷ ︸

“LSB”

+ δ (f − (f0 + fa))︸ ︷︷ ︸
“USB”

]}
for f > 0 .

Figure 2.8(a) displays the phasors of Eq. (2.49a). A schematic (one-sided) power spectrum similar to
Eq. (2.49c), but for a non-sinusiodal modulation spectrum extending from frequency fa1 to fa2, is to be
seen in Fig. 2.8(b). The AM carrier at frequency f0 contributes a minimum of 1

1+2×( 1/4) = 2
3 of the total

spectral power for a maximum modulation index m = 1, Eq. (2.49c). This transmitter power could be
saved if the carrier is suppressed and re-supplied at the receiver for detection.

Carrier-suppressed double-sideband modulation

With the carrier suppressed, the modulation function is m (t) = m cosωat in the case of sinusoidal
modulation. This cannot be called AM any more, because −1 ≤ m (t) ≤ +1 holds as opposed to the
requirement Eq. (2.49a). Instead, we talk of carrier-suppressed double-sideband (CS-DSB) modulation.
Because only the sidebands remain, the corresponding time function results from the superposition

sCS-DSB r (t) = 1
2 âm (cos (ω0 − ωa) t+ cos (ω0 + ωa) t) = âm cosωat cosω0t , (2.50)

which resembles sAM r (t) of Eq. (2.49b). At the zeros of the modulation function m (t) the phase of the
carrier â cosω0t jumps by π. Such a linear superposition of signals with different frequencies is called a
beat signal.

Intensity modulation

Intensity modulation (IM) modifies the intensity (or the power) of a carrier, not its amplitude as with
AM. The time-dependent power results from an average 〈·〉 over a few carrier periods. The positive real
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modulation signal m (t) =
√
pm (t) is assumed to vary slowly on the scale of a carrier period 1/ f0. The

intensity-modulated signal sIM r (t) along with its modulated intensity
〈
s2

IM r

〉
(t) then reads

sIM r (t) = â
√
pm (t) cosω0t,

〈
s2

IM r

〉
(t) = 1

2 â
2pm (t) , slowly varying positive real pm (t) . (2.51)

For a sinusoidal intensity modulation p (t) = 1 + pm cosωat with ωa � ω0 and a small modulation index
pm � 1, the modulated signal sIM r (t) can be expanded in a series,

sIM r (t) =
√

1 + pm cos (ωat) â cos (ω0t)

≈
{

1 + pm
2 cos (ωat)− p2m

8 cos2 (ωat) + . . .
}
â cos (ω0t)

≈
{

1− p2m
16 + . . .

}
â cos (ω0t)

+
{
p
4 +

3p3m
128 + . . .

}
â
{

cos [(ω0 − ωa) t] + cos [(ω0 + ωa) t]
}

+
{
−p

2
m

32 + . . .
}
â
{

cos [(ω0 − 2ωa) t] + cos [(ω0 + 2ωa) t]
}

+
{ p3m

128 + . . .
}
â
{

cos [(ω0 − 3ωa) t] + cos [(ω0 + 3ωa) t]
}

+ . . .

(2.52)

A schematic (one-sided) power spectrum 2
〈∣∣s̆IM r(f)

∣∣2〉 of a non-sinusiodal modulation spectrum extend-
ing from frequency fa1 to fa2 is to be seen in Fig. 2.8(c). Basically, the spectrum is infinitely extended. If
no frequency-dependent time or phase delays modify the partial spectra differently during transmission
(due to, e. g., chromatic dispersion in a fibre), the receiver’s photodetector current Eq. (1.1) on Page 2
exactly recovers the IM in the photocurrent, i (t) ∼

〈
s2

IM r

〉
(t) = 1

2 â
2 (1 + pm cosωat).

Angle modulation

If the angle of a carrier phasor â e jω0t is changed, we talk of angle modulation. For definiteness, we assume
again a real sinusoidal modulation η (t) = η sinωat with angular frequency ωa = 2πfa and a constant
angle modulation index η,

sPM (t) = â e j[ω0t+η(t)] = â e j(ω0t+η sinωat) = â

+∞∑
n=−∞

Jn(η) e j[ω0+nωa]t, J−n(η) = (−1)
n

Jn(η), (2.53a)

sPM (t) = <{sPM (t)} = â
[

J0 (η) cosω0t− J1 (η) [sin (ω0 + ωa) t+ sin (ω0 − ωa) t] (2.53b)

− J2 (η) [cos (ω0 + 2ωa) t+ cos (ω0 − 2ωa) t] + J3 (η) [sin (ω0 + 3ωa) t+ sin (ω0 − 3ωa) t]± . . .
]
.

The exponential can be expanded in terms of Bessel functions51 Jn(η) of the first kind and order n.
Remarkably, the Bessel functions of negative odd order n have the opposite sign of their companions with
positive order, J−n(η) = (−1)

n
Jn(η).

For small-signal angle modulation, where η � 1 holds, the expansion Eq. (2.53a) reduces to three
Bessel terms that can be further simplified52 to resemble the case of AM, Eq. (2.49a) on Page 32 and Fig.
2.8(a),

sPM (t) ≈ â
[
J0(η) e jω0t + J1(η)

(
e j(ω0+ωa)t− e j(ω0−ωa)t

)]
≈ â

[
e jω0t + 1

2η
(

e j(ω0+ωa)t− e j(ω0−ωa)t
)]

for η � 1 . (2.54)

The top of Fig. 2.9(a) displays the associated phasor diagram. Compared to Fig. 2.8(a) on Page 31, the
lower sideband phasor e j(ω0−ωa)t is reversed in sign. This corresponds to the fact that for a cos-carrier the
J1 (η)-terms in Eq. (2.53b) have a sin-dependency for angle modulation, while we see cos-dependencies for
the AM sidebands in Eq. (2.49b) on Page 32. Note that for small-signal angle modulation with η � 1 the
resultant does not change its length significantly, so that only the angle η (t) varies periodically. Naturally,

51Abramowitz, M.; Stegun, I. A. (Ed.): Handbook of mathematical functions, 9. Ed. New York: Dover Publications 1970.
Chapter 9

52See Ref. 51, Eq. (9.1.10), (9.1.12): limη→0 J0 (η) = 1, and limη→0 J1 (η) = 1
2
η
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(a) Sinusoidal small-signal angle mo-
dulation [top] and power spectra for
PM and FM [bottom]

(b) Wideband FM for different modulation in-
dices η. The carrier disappears for η = 2.405.
The bandwidth is of order 2∆f = 2ηfa.

Fig. 2.9. Angle modulation. Small-signal phasor diagram and one-sided power spectra. The height of the lines represents
the area of the associated spectral δ-functions. (a)-[top] Phasors for small-signal sinusoidal angle modulation with η � 1.
All phasors rotate counter-clockwise (ccw). The carrier phasor, the upper sideband (USB) phasor and the lower sideband
(LSB) phasor rotate with angular velocities ω0, ω0 +ωa and ω0−ωa, respectively. If the observer rotates with the carrier, the
USB phasor would seemingly rotate ccw with angular velocity ωa, while the LSB phasor would seemingly rotate clockwise
(cw) with the same angular velocity ωa. (a)-[bottom] One-sided power spectra for phase modulation (PM) with constant
modulation index η = const, and for frequency modulation (FM) with constant frequency peak deviation ∆f = ηfa.
(b) One-sided power spectra for sinusoidal frequency modulation (FM) with different modulation indeces η. The carrier
disappears for η = 2.405. A bandwidth estimate for wideband angle modulation and a fixed modulating signal bandwidth
B = famax is Bangle = 2 (η + 2)B = 2∆f + 4B.

for large-signal angle modulation and taking sufficiently many terms of the expansion Eq. (2.53) into
account, the amplitude of the angle-modulated carrier does not change at all.

A sinusoidal angle modulation can be interpreted either as a phase modulation as in Eq. (2.53a),
or as a frequency modulation (FM), because the instantaneous frequency is dη (t)/ dt = η ωa cosωat.
Introducing the frequency peak deviation ∆ω = 2π∆f = η ωa, i. e., the maximum deviation of the
instantaneous frequency from the carrier frequency f0, we write the FM signal

sFM (t) = â e j(ω0+
dη(t)
dt )t = â e j(ω0+∆ω cosωat)t, ∆ω = 2π∆f = η ωa. (2.55)

The bottom of Fig. 2.9(a) compares the (one-sided) power spectra of sinusoidal PM and FM signals. The
length of the vertical lines represents the area of spectral δ-functions. The spectral lines are equidistantly
spaced by the modulation frequency fa. If for η = const the modulation frequency is doubled, fa → 2fa,
the spectrum retains its shape (but the line separation doubles). This is characteristic for PM. However,
if the frequency peak deviation ∆ω = η ωa = const is kept constant while doubling the modulation
frequency, fa → 2fa, the spectrum changes its shape because η → 1

2η. This is typical for FM.

A one-sided FM power spectrum for a sinusoidal modulation with varying modulation index η is
displayed in Fig. 2.9(b). For η = j0,1 = 2.405 the zeroth-order Bessel function has its first zero53, and the
carrier J0 (j0,1) = 0 disappears. This fact can be used for determining the associated modulation index
η = 2.405 experimentally. Similarly, from the power ratio of any two lines in the spectrum, e. g., from
measuring the ratio [J1 (η)/ J0 (η)]

2
, the modulation index η can be found.

The larger η grows, the wider the significant portion of the (infinitely extended) spectrum becomes.
If “significant” means that more than 99 % of the total spectral power is included, then Bessel terms up

53See Ref. 51, Table 9.5. The first zero of the zeroth-order Bessel function J0 (η) is at η = j0,1 = 2.404 825 557 7.
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to the order |nmax| = η + 2 have to be taken care of 54 if η ≤ 50. For a maximum modulation signal
bandwidth B = famax we then find a significant bandwidth for an angle-modulated signal along with
Carson’s rule55 that includes 98 % of the total spectral power

B
(99 %)
angle = 2 (η + 2)B for spectral power > 99 %, modulation bandwidth B, and η ≤ 50 , (2.56a)

B
(98 %)
angle = 2 (η + 1)B for spectral power > 98 % . (2.56b)

The significant bandwidth of a frequency modulated signal is of the order of double the frequency deviation
2∆f = 2ηB as defined in Eq. (2.55). These limits are marked in Fig. 2.9.

Single-sideband generation and vestigial sideband filtering

For real modulation signals m (t) we saw in Eq. (2.48), (2.49) on Page 31 that upper sideband (USB)
and lower sideband (LSB) contain identical information, because m̆ (f) = m̆∗ (−f) holds and USB (f) =
LSB∗ (−f), see Eq. (2.36) on Page 26. For improving the practical spectral efficiency C ′pract in Eq. (2.25)
on Page 22), one of the sidebands and even the carrier could be suppressed. This would be of advantage
because the high carrier power could cause nonlinearities in a fibre channel.

Single-sideband generation Single-sideband (SSB) generation can be achieved with an IQ-modulator
as described in Eq. (2.46) on Page 30. A graphical illustration is seen in Fig. 2.10(a). An IQ-modulator
Fig. 2.10(a)-[top] with LO frequency f0 as in Fig. 2.7(a) on Page 29 is fed with input quantities ar (t) and
ai (t) that are real and imaginary part of a modulated analytic signal a (t) = m (t) (cosωat+ j sinωat), see
Eq. (2.46a) on Page 30. If Σ means subtraction (Σ =̂ diff =̂ USB), the upper sideband USB is generated.

(a) IQ-modulator for single-sideband (SSB)
generation (USB, Σ =̂ diff =̂ subtract) [top],
and one-sided power spectrum [bottom]

(b) Vestigial sideband
(VSB) filtering suppresses
redundant spectral parts.

Fig. 2.10. Analogue single-sideband (SSB) generation with an IQ-modulator, and with vestigial sideband (VSB) filtering.
(a)-[top] IQ-modulator of Fig. 2.7(a) on Page 29 for SSB generation. The modulator input quantities ar (t) and ai (t) are
real and imaginary part of an analytic signal a (t) = m (t) (cosωat+ j sinωat), see Eq. (2.46a) on Page 2.46a. The LO fre-
quency is f0. (a)-[bottom] The power spectrum |ă (f)|2 extends from fa1 to fa2. If Σ means subtraction (Σ =̂ diff =̂
USB), the upper sideband USB is generated. If Σ means addition (Σ =̂ sum =̂ LSB), the lower sideband LSB results. The
carrier is suppressed. For demodulation, a LO at frequency f0 must be added at the receiver. (b) Vestigial sideband
filtering. (b)-[top] If most of the, e. g., LSB is cut off by a transmitter (Tx) filter, the spectral width is reduced as in
(b)-[bottom left], but the information is preserved in the USB. As a consequence, the practical spectral efficiency C′pract
in Eq. (2.25) on Page 22) increases considerably. (b)-[bottom right] At the receiver, a filter with a so-called Nyquist slope
weighs amplitude and phase of the vestigial LSB such that after downconversion with a LO at f0 the baseband spectrum
reproduces the original USB.

If Σ means addition (Σ =̂ sum =̂ LSB), the lower sideband LSB results. The power spectrum |ă (f)|2 from
Eq. (2.46b) extends from fa1 to fa2 and is schematically shown in Fig. 2.10(a)-[bottom], along with the

generated one-sided SSB power spectrum 2 |m̆USB (f)|2 = |m̆ (f−(f0 + fa))|2 as derived from Eq. (2.46c).
Remarkably, the carrier frequency f0 is suppressed.

54See Ref. 51, Eq. (9.1.62)
55J. R. Carson: Notes on the theory of modulation. Proc. IRE 10 (1922) 57–64
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Vestigial sideband filtering Another method for sideband suppression is vestigial sideband (VSB,
German Restseitenband) filtering. We start with the AM spectrum Fig. 2.8(b) on Page 31. A proper
filter could remove any of the sidebands. The problem is that filters with steep slopes have also a strong
group delay dispersion which leads to distortion. Therefore a moderately steep filter slope is accepted, so
that only a vestige of the unwanted spectra remains (here: LSB and carrier). The method is illustrated
in Fig. 2.10(b)-[top]. Most of the unwanted spectral parts are cut off by a transmitter (Tx) filter, Fig.
2.10(b)-[bottom left]. At the receiver (Rx) a filter with a so-called Nyquist slope, see Fig. 2.10(b)-[bottom
right], weighs the vestigial lower sideband LSB (f + f0) = USB∗ (−f + f0) by amplitude and phase such
that after mixing with an LO at frequency f0 the resulting baseband spectrum represents the original
USB spectrum.

Analogue modulation formats — Synopsis

A number of temporal signal shapes for analogue modulation like AM, FM and PM are displayed in
this synopsis56 Fig. 2.11(a). The FM and PM examples are drawn for a rectangular modulation function
with two states only, and therefore can be also interpreted as binary digital modulation formats. The
bottom of Fig. 2.11(a) refers without any previous mathematical description to analogue polarization-
mode modulation (PolM) of an electromagnetic wave. If two orthogonal polarizations are transmitted,
e. g., in an optical fibre, then four independent data streams can be encoded on the same carrier (IQ-
components on two polarizations).

(a) Temporal signal shapes for analogue
modulation formats

(b) Temporal signal shapes for digital modulation for-
mats. The quantity T stands for the symbol period.

Fig. 2.11. Signal shapes for various analogue and digital modulation formats. (a) Schematic time dependency of signals
with various analogue modulation formats. (AM) sinusoidal amplitude modulation with modulation index 0 < m < 1.
(FM) rectangular 2-frequency modulation (this analogue FM example happens to be identical to (b)-FSK). (PM) rectangular
2-phase modulation (this analogue PM example happens to be identical to (b)-PSK). (PolM) sinusoidal polarization-mode
modulation. (b) Schematic time dependency of signals with various digital modulation formats. (ASK) amplitude-shift
keying. (FSK) frequency-shift keying. (PSK) phase-shift keying. (PMSK) polarization mode-shift keying. To the right of
the ASK and PSK curves the respective constellation diagrams are depicted, using the convention as described in Footnote
26 on Page 21 (Q-component or imaginary part on vertical axis, I-component or real part on horizontal axis). [Modified
from Ref. † on the Preface page]

2.4.2 Digital modulation formats

Digital modulation schemes are named similar to the analogue modulation formats. The four basic binary
waveform modulations (i. e., the ones with only two levels) are named amplitude-shift keying (ASK, also

56Synopsis (pronounced [sI"n6psIs]), a brief summary or general survey. Literal meaning “seeing together”, from Greek
σύν, together, and Greek ó’ ψις, the seeing; connected to o‘%άω, I see, ó’ ψoµαι, I shall see, and o’ϕϑαλµóς, eye
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binary pulse-amplitude modulation, PAM), phase-shift keying (PSK), frequency-shift keying (FSK), and
polarization mode-shift keying (PMSK), see Fig. 2.11(b).

The format ASK can be unipolar or bipolar. In unipolar formats, the sign of the signal does not change
when going from mark (logical 1) to space (logical 0). A particular important unipolar ASK format is the
case where marks correspond to high signal power and spaces to no signal power (on-off keying, OOK). If
the sign of the signal changes during a transition from logical 1 to logical 0 and vice versa, it is common
to name the format bipolar. However, as already remarked in Sect. 2.4.1 on Page 31 and in the context
of CS-DSB, Sect. 2.4.1 on Page 32, an amplitude is a non-negative quantity. A “bipolar ASK” format is
therefore a mixture of ASK and PSK.

The FSK and the PSK modulation formats switch between different carrier frequencies and carrier
phases, respectively. Examples of binary FSK and PSK are shown in Fig. 2.11(b). The bottom graph of
this figure displays an example of binary PMSK.

Advanced modulation formats use multilevel coding with M levels. Typically, the amplitude or the
phase, or simultaneously both quantities are modulated. This is called M -ary modulation and stands
for binary (M = 2, 1 bit/symbol), ternary (M = 3, on average 1.6 bit/symbol), quaternary (M = 4,
2 bit/symbol) etc. modulation formats. According to Eq. (2.7) on Page 16, a symbol with M discrete
values can encode r = log2M bit.

ASK modulation

The ASK modulation format is conceptually simple and will therefore be discussed in some length. The
format can be encoded in many physical variants and differs in the association of logical 1 and logical 0
to specific pulse shapes p (t) and to transitions between pulses. Here, we assume rectangular pulses which
occupy a full or only part of a time slot T . Figure 2.12(a)-[top] shows a bit sequence ai having a clock
period T . Below, various ASK modulation formats are depicted which encode this logical bit sequence
physically.

(a) Temporal signal shapes for
ASK modulation formats

(b) Autocorrelation func-
tions for NRZ and RZ

(c) Spectra for random bit sequences en-
coded with different modulation formats

Fig. 2.12. Amplitude-shift keying (ASK) formats, autocorrelation functions of random non-return-to-zero (NRZ) and
return-to-zero (RZ) data, and one-sided power spectra for some modulation formats. (a) Binary data ai ∈ {0, 1}, en-
coded with the formats NRZ, RZ, coded mark inversion (CMI), and alternate mark inversion (AMI, a pseudo-ternary
code). Physical pulse shapes p (t) are rect-functions. (b) Autocorrelation functions (ACF) ϑa (τ) for NRZ and RZ random
sequences (c) One-sided normalized power spectra for random data sequences encoded with the formats NRZ, RZ, 5B/6B,
and CMI. Discrete lines are only drawn for the RZ format.

If the signal does not return to the level of logical 0 between to neighbouring levels associated with
logical 1, we name this format non-return to zero (NRZ). For the return to zero (RZ) format the signal
reaches the level of logical 0 in each clock period, for the specific choice of Fig. 2.12(a) at half the clock
interval. Time functions a (t) for NRZ and RZ signals are written as

NRZ/RZ: a(t) =

+∞∑
i=−∞

ai p(t− iT ) =

+∞∑
i=−∞

ai p(t) ∗ δ(t− iT ), ai ∈ {0, 1} . (2.57)
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The binary PCM signal Sect. 6 on Page 16 can be directly transferred this way, but other codings
could be more advantageous with respect to available channel bandwidth and noise or other technical
peculiarities like clock recovery and error correction. — In the electrical domain, also (pseudo-)ternary
codes are used having three signal levels bl = 3 and no direct current (DC) component. — The coded mark
inversion (CMI) belongs to the 1B/ 2B code group: One bit (1B) is re-coded into two bit (2B) following
the rule (1B ⇒ 2B) 0 ⇒ 01 with alternating 1 ⇒ 11, 1 ⇒ 00. — The alternate mark inversion (AMI)
code is an example for a (pseudo-)ternary, DC-free line coding. There are three logical states (0, ±1)
corresponding to, e. g., three voltage levels 0 V,±5 V. However, the logical 1 is alternatively represented
by the AMI states +1 and −1, so that the information per time is identical to NRZ and RZ coding
(therefore the naming “pseudo-ternary”). — Much more complex is the 5B/ 6B coding, where each block
of 5 bits is treated as a symbol and re-coded according to a look-up table into a block of 6 bits per
symbol. For a constant information bit rate Rb, the original symbol rate Rs = 1/T must be increased
Rs ⇒ rcRs by the encoder ratio rc = 6/ 5. Because the symbol size has been increased from 5 bit to 6
bit, a parity check error correction becomes possible.

In Fig. 2.12(b) the auto-correlation functions ϑa(τ) = a(t+ τ)a(t) (ACF, Table 1.3 on Page 9) for
rectangularly shaped binary NRZ and RZ random sequences with equal distribution of logical 1 and 0
are constructed. The maximum ϑa(0) = a(t)2 amounts to 1/ 2 (NRZ) and 1/ 4 (RZ), respectively. This
corresponds to the probability 1/ 2 (NRZ) and 1/ 4 (RZ), respectively, to measure a(t) = 1 at any point
of time. For the NRZ format and |τ | ≥ T , the joint probability for the events a(t+ τ) = 1 and a(t) = 1
is 1/ 4, and therefore ϑa (|τ | ≥ T ) = 1/ 4 holds.

For the RZ format and |τ | = (i− 1/ 2)T (i = 0,±1,±2, . . .), each logical 1 is opposed to a logical
0, and we have ϑa (|(i− 1/ 2)T |) = 0. With an analogous reasoning as with NRZ, we conclude that the
relative extrema 1/ 8 of the RZ ACF are reached for |τ | = iT (i 6= 0). Between the lower and upper
corners of the NRZ and RZ ACF, the function ϑa(τ) changes linearly.

For the ACF ϑa(τ) and for the associated two-sided power spectrum Θa (f) of a binary NRZ random
sequence we find, see Table 1.3 on Page 9,

ϑaNRZ (τ) =
1

4

{
2− |τ |

T
, |τ | ≤ T

1 , |τ | ≥ T
, ΘaNRZ (f) =

T

4
sinc2(fT ) +

1

4
δ (f) . (2.58)

All other discrete lines that could be expected fall on zeros of the sinc-function sinc2(fT ) and therefore
do not show up. Spectra of NRZ test patterns (which could represent a code transmitting more than one
bit per symbol) are nicely derived in an Application Note57.

With the help of ϑa (τ) in Fig. 2.12(b), the power spectrum for the RZ format with a duty cycle
of 50 % as in Fig. 2.12(a) can be calculated58,59,60,. Because of the periodic part of the ACF, there are
discrete spectral lines at frequencies f = i/T (i = 0,±1,±2, . . .). Figure 2.12(c) displays the one-sided
power spectra 2Θa(f) for binary NRZ and RZ signals, normalized to the total average power ϑa(0) of the
coded signal and to the clock period T , i. e., to the energy per time slot. Discrete lines are shown only
for the RZ format.

If the binary data sequence is coded differently, the analytically computed power spectra61,62 look
different. Their continuous part (i. e., without discrete lines) is also displayed in Fig. 2.12(c). Note that
after re-coding the clock periods for the same information per second are reduced in comparison to NRZ
and RZ transmission, TCMI = T/2 and T5B/6B = (5/ 6)T .

57“maxim integrated” (http://www.maximintegrated.com): Spectral content of NRZ test patterns. Application Note
AN3455, http://pdfserv.maximintegrated.com/en/an/AN3455.pdf,

58E. Hölzler, H. Holzwarth: Pulstechnik, Band I. Grundlagen, 2. Ed. Berlin: Springer-Verlag 1982. General spectra of
pseudo-random bit sequences (PRBS) are calculated in Eq. (6.48), (6.49).

59Agrawal, G. P.: Lightwave technology. Telecommunication systems. Hoboken (NJ): John Wiley & Sons 2005 (Sect. 2.2)
60Ip, E.; Kahn, J. M.: Power spectra of return-to-zero optical signals. J. Lightw. Technol. 24 (2006) 1610–1618
61K. W. Cattermole, J. J. O’Reilly (Eds.): Rauschen und Stochastik in der Nachrichtentechnik (Noise and Stochastc

Processes in Communications). Weinheim: VCH Verlagsgesellschaft 1988
62J. Fluhr, P. Marending, H. Trimmel: Ein Lichtwellenleitersystem für die Übertragung von 8-Mbit/s-Signalen. Siemens

Telcom Report 6 (1983), Beiheft “Nachrichtenübertragung mit Licht”, 127–132
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A line coding of the binary NRZ sequence fits the code’s power spectrum to the properties of the chan-
nel. The 5B/ 6B and the CMI code have only small contributions at low frequencies, which is favourable
if the channel contributes significant noise in this spectral region. From 2Θa(0) = 0 it is seen that CMI
and 5B/6B code have no long sequences of logical 1 (for the AMI code: long +1 or −1 sequences), so
DC coupled circuits are not required. Finally, long sequences of logical 0 are to be avoided, too. Such
sequences can occur for NRZ, RZ, and AMI formats and would prevent clock recovery. The 5B/6B code
has a maximum of three63,64 subsequent 0. For the ternary HDB3 code65 (high density bipolar code) the
longest sequence of zeros is three subsequent 0 (therefore the naming HDB3). Every forth clock cycle
holds alternatingly the values ±1. The minimum probability for a 1 to appear is therefore 1/ 4.

Sometimes so-called scramblers randomize the logical 0 and 1 of PCM data following a fixed algorithm,
so that a pseudo-random sequence results. This scrambling can be made undone by the receiver.

Clock recovery For proper reception the receiver must recover the clock cycle from the data stream.
For rectangular NRZ pulses a(t) Eq. (2.57) with p(t) = rect ( t/T ) the power spectrum has always a zero
at f = 1/T (for the 5B/6B code at f = (6/ 5)/T , for the CMI code at f = 2/T ), see Fig. 2.12(c).
Therefore, a narrowband filter (e. g., a phase locked loop (PLL)66) cannot recover the clock frequency
at f = 1/T . However, RZ codes have pronounced spectral lines at the clock frequency f = 1/T . As a
disadvantage, double the transmission bandwidth is required compared to the NRZ format.

For clock recovery from NRZ data streams a nonlinear operation is required. The differentiated pulses
are rectified, so that two “needles” with a separation of T appear for each pulse. Their spectrum has
a strong component at f = 1/T . A PLL circuit or a surface acoustic wave (SAW) device acts as a
narrowband filter and leads to a data-synchronous clock. For fitting the phase such that each pulse is
sampled in its centre, compact self-correcting regenerator circuits are used67.

ASK modulation formats — Synopsis The various unipolar and bipolar ASK formats are dis-
played in Fig. 2.13. A word of warning: The established naming “bipolar ASK” is misleading, because an
amplitude is positive by definition (like a radius), and no amplitude shift can make it negative. What is
meant with bipolar ASK is a combination of unipolar ASK and phase-shift keying (PSK).

Unipolar ASK Figure 2.13(a) displays how a bit sequence (top row) is encoded using various unipolar
ASK formats. The following properties can be seen:

NRZ Non-return to zero. Logical 0 is a space (low level of physical signal), logical 1 is a mark (high level
of physical signal). A string of consecutive 0 or 1 means no signal change.

RZ Return to zero. Same as NRZ, but marks occupy only a fraction of the bit slot.

Manchester Also phase encoding68 (PE). Logical 0 is a mark in the first part of the bit slot, and a space
in the second one. Logical 1 is a space in the first part of the bit slot, and a mark in the second
one. The average signal power is the same for both 0 and 1. The required transmission bandwidth
doubles compared to the NRZ format.

Differential Manchester A differential encoding, using the presence or absence of transitions to indi-
cate a logical value. Logical 0 is a level transition in the first part of the bit slot, logical 1 is a level
transition in the second part of the bit slot.

63A. Stegmeier, H. Trimmel: Ein Lichtwellenleitersystem für die Übertragung von 34-Mbit/s-Signalen. Siemens Telcom
Report 6 (1983) Beiheft “Nachrichtenübertragung mit Licht”, 133–137

64See Reference 61
65E. Hölzler, H. Holzwarth: Pulstechnik, Band II. Anwendungen und Systeme, 2. Ed. Berlin: Springer-Verlag 1984. Sect.

8.4.2.2
66See Reference 65, Sect. 8.2.1.2
67C. R. Hogge: A self correcting clock recovery circuit. IEEE J. Lightwave Technol. LT-3 (1985) 1312–1314
68The name comes from its development at the University of Manchester, where the coding was used to store data on

the magnetic drum of the Manchester Mark 1 computer. — The Manchester Mark 1 was one of the earliest stored-program
computers, developed at the Victoria University of Manchester from the Small-Scale Experimental Machine (SSEM) or
”Baby”(operational in June 1948). It was also called the Manchester Automatic Digital Machine, or MADM. Work began
in August 1948, and the first version was operational by April 1949; a program written to search for Mersenne primes ran
error-free for nine hours on the night of 16/17 June 1949 [cited from http://en.wikipedia.org/wiki/Manchester Mark 1]
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(a) Temporal signal shapes for unipolar ASK. The signal’s
polarity is always positive.

(b) Temporal signal shapes for bipolar ASK. The signal’s
polarity is marked by a negative (−) or a positive sign (+)

Fig. 2.13. Synopsis of various unipolar and bipolar amplitude-shift keying (ASK) formats. (a) Unipolar ASK encoded with
the formats NRZ, RZ, Manchester, differential Manchester, and coded mark inversion (CMI). (b) Bipolar ASK encoded
with carrier-suppressed return to zero (CSRZ), duobinary (DB), alternate mark inversion (AMI), and vestigial sideband
(VSB) filtering with a progrssive phase shift of π/ 2. — Amplitudes are always positive, but bipolar “ASK” codes shift the
phase as well. [Modified from Fig. 2.11 and 2.12 of Ref. † on the Preface page]

Miller Also delay modulation. Logical 0 means no signal transition, except when 0 is followed by another
0, then there is a transition at the end of the bit slot. Logical 1 is signalled by a transition at the
centre of the bit slot from either level.

CMI Coded mark inversion. An NRZ line code, in which logical 0 is encoded as a 0 → 1 transition at
the centre of the bit slot, and logical 1 remains constantly on the previous level for the entire bit
slot. For a sequence of 1 the constant level is inverted for each subsequent bit slot.

Bipolar ASK and VSB Figure 2.13(b) displays how a bit sequence (top row) is encoded using various
bipolar ASK formats (ASK with {0, π}-PSK). In addition, vestigial sideband (VSB) encoding shows a
combination of ASK with progressive (π/ 2)-PSK. The reason for this additional effort is to increase the
spectral efficiency C ′, see Eq. (2.23) on Page 22, and to reduce intersymbol interference (ISI). For example,
with VSB, the signals of bit slots adjacent to a central slot interfere destructively, if by dispersion they
spill over into the central bit slot.

CSRZ Carrier-suppressed return to zero. This is an RZ format with additional phase modulation. If all
even bit slots see a positive signal, then all odd bit slots see a negative signal, i. e., a phase shift by
π separates even and odd bit slots.

DB, LP-DB Duobinary, low-pass filtered DB. Logical 0 is a space. Logical 1 is a mark without a phase
shift by π if there is an even number of 0 since the last 1, and a mark with a phase shift by π if there
is an odd number of 0 since the last 1. Duobinary data encoding is a form of correlative coding in
partial response signalling. The modulator drive signal can be produced by adding one-bit-delayed
data to the present data bit to give levels 0, 1, and 2. An identical effect can be achieved by applying
a low-pass (LP) filter to the ideal binary data signal (LP-DB). The correlated three-level signal can
be demodulated into a binary signal by using an optical direct detection receiver.

AMI Alternate mark inversion, also called modified duobinary (bipolar or decode duobinary). Logical
0 is a space. Logical 1 is a mark, where each mark is phase shifted by π compared to the previous
mark (even if 0 are between consecutive marks).

VSB, AP Vestigial sideband filtering, also called π/ 2 alternating phase change69. An optical VSB signal
is usually generated from an OOK-NRZ or OOK-RZ signal by an optical filter, the passband of

69Schnarrenberger, M., Sotobashi, H., Chujo, W. and Freude, W.: Novel intersymbol interference reduction technique by
bit synchronized π/ 2 phase shift. Proc. Institute of Electronics, Information and Communication Engineers (IEICE Japan)
Spring Conference, Hiroshima, 28.–31.03.2000. http://www.ipq.kit.edu/staff/freude/ieice2000 pibytwo.pdf
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which is detuned from the carrier, see Fig. 2.10 on Page 35. Logical 0 is a space. Logical 1 is a mark
with a progressive phase shift of π/ 2 added for each bit slot (even when it contains a 0).

PSK modulation

PSK formatted data streams are generated by modulating the phase η of the carrier â e j[ω0t+η(t)], while
its amplitude â and frequency f0 are kept constant, see Fig. 2.9 on Page 34. For binary PSK formats, the
phase takes two values, commonly chosen to be η = 0 and η = π. Because the intensity remains constant,
nonlinear effects that depend on intensity are independent from the modulated data stream.

Fig. 2.14. Real part (Re) and imaginary part (Im) of a complex carrier envelope modulated with binary DPSK (DBPSK,
upper graph) and binary π/ 2-DPSK (π/ 2-DBPSK, lower graph). Sinusoidally shaped RZ pulses represent the carrier
envelope. The carrier time function itself is not drawn, because it oscillates very rapidly inside each pulse-shaped part of
the envelope. For π/ 2-DPSK, logical 0 and 1 are represented by a relative phase shift of −π/ 2 (clockwise) and +π/ 2
(counter clockwise), respectively. The format π/ 2-DBPSK resembles minimum-shift frequency keying (MSK). The format
π/ 2-DBPSK is identical to MSK, if the phase is not switched, but changed continuously during each time slot. [Modified
from Ref. 70]

PSK signal transmission so far is only used in backbones, where cost does not matter too much. There
are mainly three reasons for this:

• PSK formats require well defined carriers with little phase noise, and phase-sensitive coherent
receivers with a laser LO as discussed in Sect. 2.3.2 on Page 30. A photodetector as briefly described
in Eq. (1.1) on Page 2 would only be sensitive to the intensity. Unfortunately, such an LO laser adds
to cost and complexity, not to speak of the cost of the transmitting laser which must have similarly
good properties. So in practice, one tries to avoid such schemes.

• In optical communications, a typical wavelength is λ0 = 1.55µm (f0 = 193.51 THz, see Table 2.1 on
Page 21). Consider a fibre transmission span of L = 100 km. Following Eq. (2.11) on Page 18, the
acquired phase would be ϕ = −βL ≈ −k0nL, where the refractive index of the fibre is about n = 1.5.
A tiny refractive index change by only ∆n = 0.77× 10−11 (this happens easily if the temperature
changes randomly by fractions of a degree) would cause a phase shift by ∆ϕ = − 2π

1.55µm × 0.77 ×
10−11 × 100 km = −π, and thus randomly invert the meaning of space and mark with respect to
the phase of the LO.

• Optical signals have a certain polarization. The mixing between the incoming signal and the LO
works only if both oscillate in the same state of polarization. However, after hundreds of kilometers
of transmission, the state of polarization is usually no longer known.

Despite these difficulties, coherent schemes are gaining ground and will be more and more deployed.
However, all of these constraints can be relaxed by using a modified form of PSK, namely differential
PSK (DPSK), Fig. 2.14. The scheme does not compare the phase of a transmitter laser and a receiver
LO, but rather the phase difference between subsequent time slots. For high data rates, the slot width T
and therefore the time difference is small, and the phase even of inexpensive transmitter lasers is stable
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enough during such a short time interval of, e. g., T = 25 ps at a data rate of 40 Gbit/s. At present, DPSK
is globally used in both long-haul backbones and medium-haul networks. Two different DPSK flavours
are common:

DPSK Differential phase-shift keying70. Information is coded in a phase difference ∆ϕ = {0, π} between
two neighbouring time slots. If ηk represents the carrier phase for the k-th time slot, the phase
difference ∆ϕ = ηk − ηk−1 is ∆ϕ = 0 for encoding a logical 0, and it is ∆ϕ = π for a logical 1.

π/ 2π/ 2-DPSK π/ 2 differential phase-shift keying71,72. Information is coded in a phase difference ∆ϕ =
± π/ 2 between subsequent time slots. The phase difference is ∆ϕ = − π/ 2 for encoding a logical 0,
and a phase difference ∆ϕ = + π/ 2 encodes a logical 1. The procedure is identical to a progressive
π/ 2 phase shift on top of the DPSK encoding. The unique advantage73 of π/ 2-DPSK arises from
its response to over-filtering, as will be shown in a later section.

For a binary NRZ DPSK signal with a symbol rate Rs = 1/T , the total bandwidth BDPSK for signalling
is essentially determined by the zero of the NRZ power spectrum at f0±Rs as in Fig. 2.12(c) on Page 37,

BDPSK ≈ 2Rs =
2

T
. (2.59)

This is much less than would be expected from distortion-free analogue angle modulation, where Eq. (2.56b)
on Page 35 would predict a bandwidth of 2 (η + 1)B = 2 (π/ 2 + 1)Rs ≈ 5Rs for an average modulation
index of η = 〈∆ϕ/ 2〉 = π/ 2.

FSK modulation and OFDM

Frequency-shift keying (FSK) encodes data by shifting the carrier frequency f0. Binary data are encoded
in two carrier frequencies f0±∆f , which are separated by the frequency spacing (“tone” spacing) 2∆f . For
estimating the transmission bandwidth with Eq. (2.56b), we set η = ∆ω/ (2πRs) according to Eq. (2.55)
on Page 34 and find

BFSK ≈ 2 (η + 2)B = 2

(
∆f

Rs
+ 1

)
Rs = 2 (∆f +Rs) . (2.60)

If ∆f � Rs holds, we speak of narrowband FSK. The case ∆f � Rs is named broadband FSK. Practical
implementations of, e. g., a binary FSK modulate the phase η (t) of the optical carrier e j[ω0t+η(t)] in
a linear fashion according to dη (t)/ dt = ±2π∆f , η (t) = ±∆ω t with ∆ω = 2π∆f . There are two
important versions:

CFSK Continuous-phase FSK. For binary CFSK, logical 0 and logical 1 are represented by carrier
frequencies f0−∆f and f0+∆f , respectively. A binary data change 0→ 1 is represented by switching
the slope of the continuous phase change from dη (t)/ dt = −∆ω to dη (t)/ dt = +∆ω . The data
change 1 → 0 requires to switch the phase slope from dη (t)/ dt = +∆ω to dη (t)/ dt = −∆ω .
The “transitions” 0 → 0 and 1 → 1 leave the phase slope unchanged, and we have η (t) = −∆ω t
and η (t) = +∆ω t, respectively. The phase function η (t) is continuous and consists of straight
line segments. This saves bandwidth compared to a “hard” switching of independent carriers as in
switched FSK.

70Wei, X.; Gnauck, A. H.; Gill, D. M.; Liu, X.; Koc, U.-V.; Chandrasekhar, S.; Raybon, G.; Leuthold, J.: Optical π/ 2-
DPSK and its tolerance to filtering and polarization-mode dispersion. IEEE Photon. Technol. Lett. 15 (2003) 1639–1641

71See Ref. 70
72H. Grießer, M. Eiselt, B. Teipen, A. Autenrieth, K. Grobe und J.-P. Elbers: Options for Tb/s transmission,“ ITG

Workshop 3.5.1 Karlsruhe (2011)
73See Ref. 70



2.4. MODULATION FORMATS 43

OFDM Orthogonal frequency division multiplexing74,75 is both, a specialized and a generalized form
of CFSK. Generalized in so far, as multiple frequencies can be present at the same time, and
specialized because the frequency separation is tied to the symbol duration. If the CFSK symbol
shape is rectangular with a duration T , and if the participating carrier frequencies fν = νRs =
are chosen to be integer multiples ν of the symbol rate (implying a frequency line separation of
2∆f = 1/T ), inter-symbol interference is minimized because the symbols are orthogonal,

1

T

∫ T0+T/2

T0−T/2

exp (+ j 2πν t/T ) exp (− j 2πν′ t/T ) dt = δνν′ (arbitrary reference time T0). (2.61)

This means that even if many carrier frequencies with different complex amplitudes are present at
the same time, any complex carrier exp (+ j 2πν t/T ) which is modulated with a rectangular pulse
having a complex-valued amplitude c̆ν can be isolated from any other carrier. At the receiver, an
IQ-demodulator as in Fig. 2.7(d) on Page 29 with local oscillator exp (− j 2πν′ t/T ) mixes with the
arriving signal carriers c̆ν exp (+ j 2πν t/T ) and integrates over a symbol duration T . Only if the
LO frequency ν′ = ν is chosen properly, the result of this integration will be c̆ν . Received carriers
with ν 6= ν′ do not contribute and are thus ignored. If the complex modulation amplitudes c̆ν would
be real, and if only two alternating carriers are involved, this “OFDM” reduces to CFSK.

SFSK Switched FSK uses independent carriers, which are switched on and off. The phase functions then
have discontinuities, which increases the required bandwidth compared to CFSK.

MSK Minimum-shift keying. If the tone spacing equals half the symbol rate, 2∆f = Rs/ 2 = 1/ (2T ),
then any data transition changes the phase continuously by |∆ϕ| = ∆ω T = π/ 2 during the
duration of a time slot T . If further the amplitudes of the two tones f0 ± ∆f are identical, the
scheme is identical to the π/ 2-DPSK format as depicted in Fig. 2.14: A logical 0 is encoded by a
phase change of ∆ϕ0 = − π/ 2 (the carrier frequency is switched to or remains at f0 − ∆f), and
a logical 1 is encoded by a phase change of ∆ϕ1 = + π/ 2 (the carrier frequency is switched to or
remains at f0 +∆f).

FODM Similar to the relationship between CFSK and OFDM, there exists an affinity between MSK and
fast orthogonal frequency division multiplexing76 (FODM) with half the standard OFDM carrier
spacing.

Digital modulation formats — Synopsis

The properties77,78,79,80,81 of various digital modulation formats for transmitting a binary 40 Gbit/s
signal (symbol time slot T = 25 ps) are summarized in the following. The signal spectra schematics in
Fig. 2.15(a) refer to random binary data encoded with various modulation formats. Families of modulation
formats are grouped together with the broken blue lines (– – –).

74J. Leuthold, W. Freude: Optical OFDM and Nyquist multiplexing. In: Kaminow, I. P.; Li, Tingye; Willner, A. E. (Eds.):
Optical Fiber Telecommunications VI B. Systems and Networks, 6th Ed. Elsevier (Imprint: Academic Press), Amsterdam
2013, Chapter 9, pp. 381–432

75OFDM transmission is very common, for instance in telephone-line access networks like (V)DSL (short for (very) high-
speed d igital subscriber l ine). My 50 Mbit/s (downlink) & 10 Mbit/s (uplink) VDSL connection comprises 4 096 carriers in
a spectral region up to 17.664 MHz transmitting 1 . . . 10 bit per carrier, depending on the individual SNR = 25 . . . 55 dB.

76J. Zhao, A. D. Ellis: Novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier.
OFC 2010, San Diego. Paper OMR1

77Winzer, P. J.: Optical transmitters, receivers, and noise. Wiley Encyclopedia of Telecommunications (2002).
http://www.mrw.interscience.wiley.com/eot/articles/eot404

78Gnauck, A. H.; Liu, X.; Wei, X.; Gill, D. M.; Burrows, E. C.: Comparison of modulation formats for 42.7-Gb/s single-
channel transmission through 1980 km of SSMF. IEEE Photon. Technol. Lett. 16 (2004) 909–911

79Gnauck, A. H.: Advanced amplitude- and phase coded formats for 40-Gb/s fiber transmission. Proc. 17th Annual
Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), Puerto Rico, USA, November 7–11, 2004. Paper
WR1

80P. J. Winzer, R.-J. Essiambre: Advanced optical modulation formats. Proc. IEEE 94 (2006) 952–985
81Charlet, G.: Progress in optical modulation formats for high-bit rate WDM transmissions. IEEE J. Sel. Topics Quantum

Electron. 12 (2006) 469–483
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Variants of spectra are drawn in light grey as well as the associated explanatory texts. Schematics of
eye diagrams reveal typical pulse shapes, upper right corner of the subfigures. Figure 2.15(b)-[top] shows
measurements82,83 of eye diagrams for the formats NRZ, CSRZ and RZ with a pulse duty cycle of 33 %
along with the associated spectra.

(a) Semi-logarithmic power spectra for random data encoded
with various modulation formats

(b) [top] Eye diagrams and spectra [bottom] Constellation
diagrams of binary and M -ary modulation formats

Fig. 2.15. Synopsis of properties for various digital modulation formats. (a) Spectra for random binary data, grouped
together by the broken blue lines (– – –). The horizontal axis represents frequency (1 div = Rs = 1/T , symbol time slot T ),
the logarithmic vertical axis gives the relative spectral power density in dB (1 div = 10 dB). Spectra in light grey are named
in the subfigure texts using the same colour. Eye diagram schematics are shown in the upper right corners of the subfigures.
For the NRZ spectrum, unexpected lines are to be seen at a frequency offset ± 1/T from the carrier if we compare to the
spectrum in Fig. 2.12(c) at Page 37. These unexpected lines are due to the finite slopes of the actual real-world NRZ pulse,
which deviates from an ideal rect-function. [Compiled from Ref. 77, 78, 79, 80, 81] (b)-[top] Measured random signals
(so-called “eye diagrams”) for NRZ, CSRZ and 33 % RZ formats with measured power spectra [modified from Ref. 82, 83]
(b)-[bottom] Constellation diagrams for the binary formats OOK and (D)PSK, and for the M -ary formats DB, (D)QPSK,
(D)8PSK, and 16QAM with mappings to so-called Gray code86 symbols. [Modified from Ref. 84 and 85 (16QAM)]

Finally, Fig. 2.15(b)-[bottom] displays so-called constellation diagrams for binary and M -ary modu-
lation formats84 showing amplitude and phase of the transmitted signals in a complex plane I-Q plane
as was discussed previously in Sect. 2.3.2 on Page 28. Implicitly it is assumed that the horizontal axis
represents the real part (Re, the in-phase or I-component) of the electric field and the vertical axis repre-
sents the imaginary part (Im, the quadrature or Q-component) of the electric field. Obviously, the QPSK
constellation in Fig. 2.15(b)-[bottom] is identical to the constellation of a 4QAM format. The constellation
diagram of a more complicated 16QAM format85 (which in addition uses a Gray code86) completes the

82Pincemin, E. et al.: Robustness of the OOK modulation formats at 40 Gbit/s in the practical system infrastructure.
ECOC (2005). Paper We4.P.112

83Gosselin, S.; Joindot, M.: Key drivers and technologies for future optical networks. ECOC (2006). Tutorial We2.2.1,
Slide 43

84Grobe, K.: 40 Gb/s techniques for metro optical networking. Der Fernmelde-Ingenieur 59 (2005) 1–35. Fig. 19
85Kikuchi, N.; Sekine, K.; Sasaki, S.: Proposal of inter-symbol interference (ISI) suppression technique for optical multilevel

signal generation. ECOC (2006). Paper Tu4.2.1
86Frank Gray, physicist at Bell Laboratories, ?Alpine (IN) 13.9.1887, † 23.5.1969. Numerous innovations in television,

both mechanical and electronic. Remembered for the invention of the Gray code (reflected binary code) in 1947. The
advantage of this code: Consecutive positions of this code differ only by one bit. If a rotary position encoder reads out
a number of bits in parallel (encoded in opaque and transparent ring segments with different radii), no simultaneous bit
switching is required, which, when not properly done, could lead to glitches. — “In modern digital communications, Gray
codes play an important role in error correction. For example, in a digital modulation scheme such as QAM where data
are typically transmitted in symbols of 2 bit or more, the signal’s constellation diagram is arranged so that the bit patterns
conveyed by adjacent constellation points differ by only one bit. By combining this with forward error correction capable
of correcting single-bit errors, it is possible for a receiver to correct any transmission errors that cause a constellation point
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synopsis. With implicit reference to Fig. 2.15(a), the following list illustrates the application of various
modulation formats for transmitting a data stream of 40 Gbit/s :

40 GBd symbol rate with 1 bit / symbol:

OOK On-off keying. NRZ, RZ (duty cycle 33 % and 50 %), chirped RZ87 (CRZ, duty cycle 50 %),
carrier-suppressed RZ (CSRZ, duty cycle 66 %), chirped CSRZ

DB Duobinary. NRZ-DB, chirped NRZ-DB, RZ-DB (duty cycle 33 % and 50 %), CRZ-DB, CSRZ-
DB, chirped CSRZ-DB

VSB Vestigial sideband filtering. Sideband and carrier (partially) suppressed

DPSK Differential binary phase shift keying (D(B)PSK), NRZ-DPSK, chirped NRZ-DPSK, RZ-
DPSK (duty cycle 33 % and 50 %), CRZ-DPSK, CSRZ-DPSK, chirped CSRZ-DPSK

20 GBd symbol rate with 2 bit / symbol:

DQPSK Differential quaternary88 PSK (or differential four-PSK, or differential 4QAM). (N)RZ,
CSRZ (duty cycle 33 %, 50 % and 66 %)

13.3 GBd symbol rate with 3 bit / symbol:

D8PSK Differential octonary PSK (or differential eight-PSK)

10 GBd symbol rate with 4 bit / symbol:

16QAM Seno-denary quadrature amplitude modulation (or sixteen-QAM)

Pulse-position modulation

Pulse-position modulation (PPM) for optical communication systems was patented89 as early as 1983. The
format aims at optimum sensitivity without putting much weight on spectral efficiency. In this respect it is
different from but complements the spectrally more efficient QAM formats. In wired terrestrial long-haul
communications PPM is of no interest, but free-space optical (FSO) terrestrial links90 or links between
earth terminals and satellites profit from the inherent sensitivity of the format, see Fig. 2.4(b) on Page 24.
Of course91, for the same bit rate, M -PPM schemes require significantly more bandwidth than spectrally
more efficient modulation formats, but due to the high carrier frequency and in contrast to RF wireless
systems, there is no intrinsic bandwidth limitation for FSO channels.

Pulse-position modulation is a form of signalling that uses the same transmitter and receiver hardware
as with OOK. In M -ary PPM (M -PPM), a number of r = log2M information bits is encoded by the
position of an optical pulse within M equidistant time slots of a symbol with duration T , Fig. 2.16. The

to deviate into the area of an adjacent point. This makes the transmission system less susceptible to noise.” [Cited after
http://en.wikipedia.org/wiki/Gray code]

87If a controlled amount of analog phase modulation is applied to a modulation format, the qualifier “chirped” is added.
In the case of CRZ, a bit-synchronous periodic chirp spectrally broadens the signal bandwidth. Although this reduces the
format’s suitability for high spectral efficiency WDM systems, it generally increases its robustness to fiber nonlinearity.
[Cited from Ref. 80, Sect. VI.D]

88Distributive numbers answer “how many times each?” Singly is a distributive number, while single is a multiplier. —
Latin singuli (every one, je einer), bini (every two, je zwei), terni (every three, je drei), quaterni, quini, seni (senary = based
on the number six), septeni, octoni (óctonary = based on the number eight), noveni, deni (every ten, denary numbers =
decimal numbers), undeni, duodeni, terni deni, quaterni deni, quini deni, seni deni (seno-denary), septeni deni, duodeviceni,
undeviceni, viceni (every twenty, je zwanzig)

89I. Garrett: United States Patent Number 4,584,720, Apr. 22, 1986. Filed on Aug. 30, 1983
Abstract: An optical communication system using digital pulse position modulation employs a mode locked laser with a
mode locking frequency equal to the time slot frequency of the modulation and means dependent on groups of consecutive
digits of the data to be transmitted to select pulses from the laser for transmission. In one example, 4-bit groups from the
data for transmission select one out of 20 pulses from the laser thus leaving a guard interval of 4 time slot periods between
position modulated pulses.

90W. Gappmair, S. Hranilovic, E. Leitgeb: Performance of PPM on terrestrial FSO links with turbulence and pointing
errors. IEEE Comm. Lett. 14 (2010) 468–470

91Until the end of the present “Pulse-position modulation” section, we follow in large parts the text of Ref. 33 on Page 22.
Sect. 2.2.1.5, p. 241 ff.
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Fig. 2.16. Pulse-position modulation with M = 4 different pulse positions inside the frame of a symbol duration T . The
signal’s duty cycle is 1/M , so that the peak power in each pulse is larger than the average power (· · · · · ·) by a factor of M .

resulting waveforms have a low duty cycle 1/M , and the peak power in each pulse is larger than the
average power (dotted red line, · · · · · ·) by a factor of M . This makes PPM well suited for average-power
limited transmitters with EDFA, but a poor choice for peak-power limited transmitters with SOA.

As can be seen from Fig. 2.12(c) on Page 37 and Fig. 2.15(a) on Page 44, the upper-frequency limit
required for NRZ-OOK signalling with a symbol duration T is 1/T . For identical bit rates RbNRZ-OOK =
RbM-PPM = 1/TNRZ-OOK, this leads to a larger M -PPM bandwidth BM-PPM = (M/ r)BNRZ-OOK,

RbNRZ-OOK = RbM-PPM : (2.62)

BNRZ-OOK =
1

TNRZ-OOK
, BM-PPM =

1

TM-PPM
=
M/ log2M

TNRZ-OOK
=
M

r
BNRZ-OOK, r = log2M.

Figure 2.17 shows the spectra of NRZ-OOK, 2PPM, 4PPM and 16PPM signals. The bandwidths are
kept identical by having identical pulse widths TM-PPM = TNRZ-OOK. In this case the M -PPM bit rate
becomes smaller, RbM-PPM = (r/M)Rb NRZ-OOK,

TM-PPM = TNRZ-OOK : (2.63)

RbNRZ-OOK =
1

TNRZ-OOK
, RbM-PPM =

log2M

TM-PPMM
=

(log2M)/M

TNRZ-OOK
=

r

M
RbNRZ-OOK, r = log2M.

Fig. 2.17. Calculated spectra for square waveforms used in OOK and 2PPM, 4PPM, and 16PPM modulation for a fixed
pulse width (OOK and M -PPM) of TM-PPM = TNRZ-OOK = 100 ps. Because of this choice the first spectral zero is always at
1/TM-PPM = 10 GHz, and the bit rates for M -PPM become smaller than for NRZ-OOK, RbM-PPM = ( r/M)RbNRZ-OOK

(r = log2M). The M -PPM waveforms have a smaller bandwidth ratio Br = fh/ fl of the 10 dB higher and lower limiting
frequencies fh and fl, respectively, and a significantly smaller fractional (or relative) bandwidth Bf = B10 dB/ [ (fh + fl)/ 2]
(B10 dB = fh−fl) than the OOK waveforms. For the OOK spectrum, we set fl = 10 kHz, which is a common low-frequency
specification for applicable broad-band electronics. For a constant bit rate, the M -PPM spectra are broadened by a factor
of M/ r, which increases the 10 dB bandwidth B10 dB, but does not impact Br. [After Ref. 33 on Page 22. Fig. 9, p. 243]

While electrical bandwidth limitations may determine the maximum slot rate Rslot = 1/TM-PPM for
a single M -PPM channel, commercially available high-speed 10 . . . 40 Gbit/s telecom electronics makes it
easy to implement moderately high bit rates. For example, by transmitting 16PPM (r = 4) at a slot rate
of Rslot 16PPM = 10 GSlot/s, a bit rate of Rb 16PPM = 2.5 Gbit/s can be delivered with a symbol rate of
Rs 16PPM = 10 GBd / 16 = 625 MBd.

The low duty cycle of M -PPM waveforms can also lead to impairments due to optical nonlinearities,
so that the peak transmit power must be limited. Naturally, this does not apply to FSO systems, were the
low duty cycle in combination with the high peak power delivered by EDFA during short signal bursts
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even helps in bridging longer distances. On the receive side, M -PPM requires two clocks to be recovered,
a symbol and a slot clock. Clock acquisition can be challenging for large M since for a given average
optical power the received electrical power at the clock frequencies becomes smaller according to 1/M2,
which may require embedded synchronization bits.

For the same pulse width TM-PPM = TNRZ-OOK, the M -PPM waveforms compared to NRZ-OOK have
a smaller bandwidth ratio Br, and a significantly smaller fractional (or relative) bandwidth Bf . This is
mainly due to the smaller 10 dB bandwidth B10 dB which is defined at frequencies fh and fl, where the
power spectrum is 10 dB down from its maximum,

Br =
fh
fl
, Bf =

B10 dB

(fh + fl)/ 2
, B10 dB = fh − fl (2.64)

For a constant bit rate, the M -PPM spectra are broadened according to Eq. (2.62) on Page 46 by
a factor of M/ r, which increases the 10 dB bandwidth B10 dB, but does not impact Br. Assuming a
pseudo-random bit sequence (PRBS) of 10 Gbit/s NRZ-OOK waveforms, Br extends from a practical
lower bound of fl = 10 kHz up to fh = 10 GHz (six decades!). In contrast, the spectra for M -PPM
waveforms operating at the same data rate span less than two decades, reducing Br by over 4 orders of
magnitude, despite having more high-frequency content. This relaxes the performance requirements on
wide-band electronic amplifiers and drivers. In addition, since the longest string of consecutive logical 1
comprises two logical 1 (from two adjacent PPM symbols), pattern-dependencies in transmit and receive
hardware are reduced, making it easier to generate and receive high-quality waveforms.

The M -PPM format also benefits from the sequential nature of the symbol set, which enables a single-
chain of drive electronics and associated filters to generate and receive the complete symbol set. This
simplifies and improves the decision process, since it is easier to make a fair comparison of the M -samples
within a symbol to determine which is the largest.

Finally it should be remarked that M -PPM can be combined with M -ary QAM, PSK, FSK, and
additionally with PMSK (see Fig. 2.11(b) on Page 36) for an even higher sensitivity92.

92Ludwig, A.; Schulz, M.-L.; Schindler, P.; Wolf, S.; Koos, C.; Freude, W.; Leuthold, J.: Stacked modulation formats
enabling highest sensitivity optical free-space links. Opt. Express 23 (2015) 21942–21957
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Chapter 3

Optical transmitters

Among the variety of optical sources, optical fiber communication systems almost always use semicon-
ductor-based light sources such as light-emitting diodes (LED) and laser diodes (LD) because of the
advantages such sources have over the others. These advantages include compact size, high efficiency,
required wavelength of emission, and the possibility of direct modulation at high speed. However, high
data rates and phase-sensitive modulation formats call for external modulators. Besides the references
given in the preface, several books covering the topic can be recommended1,2,3,4, sorted according to
complexity.

3.1 Light sources

Laser is an acronym for l ight amplification by stimulated emission of radiation. Therefore, our first task
is to understand what is meant by stimulated (synonym: induced) emission and under what conditions
one can achieve amplification of light by stimulated emission. Laser — the device — may be defined as a
highly monochromatic, coherent source of optical radiation. In this sense it is analogous to an electronic
oscillator, which is a source of electromagnetic waves in the lower frequency range of the electromagnetic
spectrum. The acronym “laser” contains the word “amplification”, and obviously the optical amplifier and
the laser are as closely related as the “transistor amplifier” and the “transistor oscillator”. Historically,
the advent of lasers preceded that of optical amplifiers, so the chapter on lasers is placed ahead that of
optical amplifiers.

A laser consists of an active medium that is capable of providing optical amplification. This medium
may be a collection of microsystems like atoms, molecules, or ions in the solid, liquid or gaseous form.
Placed around the amplifying medium there is an optical resonator that provides the necessary optical
feedback, Fig. 3.1. For an optical amplifier, this feedback is sufficiently suppressed in a certain range of
the gain. The optical resonator in its simplest form consists of two plane mirrors aligned suitably to
confine the optical energy as light propagates back and forth between the mirrors. Such a structure is
called a Fabry-Perot5 resonator6,7,8. It consists of a strip waveguide with height d and width b, and two
plane mirrors with power reflection factors R1,2 at z = 0, L. The active volume amounts to V = dbL. The
waveguide has a refractive index n and is surrounded by a cladding with index n2. With semiconductor

1Ghatak, A.; Thyagarajan, K.: Introduction to fiber optics. Cambridge: University Press 1998. Chapter 11
2Hecht, J.: Understanding fiber optics, 4. Ed. Upper Saddle River: Prentice Hall 2002. Chapter 9
3Agrawal, G. P.: Lightwave technology. Vol. 1: Components and devices. Hoboken: John Wiley & Sons 2004. Chapter 5
4Iizuka, K.: Elements of photonics, Vol. I and II. New York: John Wiley & Sons 2002. Vol. II Chapter 13 and 14
5Charles Fabry, French physicist, ? 1867, † 1945. — Alfred Pérot, French physicist, ? 1863, † 1925
6Pérot, A. and Fabry, C.: On the application of interference phenomena to the solution of various problems of spectroscopy

and metrology. Astrophys. J. 9 (1899), 87–115. http://dx.doi.org/10.1086/140557
Pérot, A. and Fabry, C.: Théorie et applications d’une novelle méthode de spectroscopie interférentielle. Ann. Chim. Phys.
16 (1899) 115–44.

7Born, M.; Wolf, E.: Principles of optics, 6. Ed. Oxford: Pergamon Press 1980
8Hecht, E.: Optics. 2nd Ed. Reading: Addison Wesley 1987. See Chapter 9 Sect. 9.6.1 Page 368

49
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Fig. 3.1. Laser resonator modes. Resonator length L, strip waveguide height d, strip waveguide width b along y-axis, active
volume V = Lbd, mirrors with power reflection factors R1,2

lasers it is common to cleave the crystal at z = 0, L perpendicularly to the z-axis. The power reflection
factor for perpendicular incidence at such a cleaved plane semiconductor-air interface can be calculated
according to Fresnel’s9 formula10

RP =

(
n− n3

n+ n3

)2

. (3.1)

For a laser waveguide with refractive index n ≈ 3.6 (GaAs) and a cleaved waveguide facet at the
semiconductor-air interface (n3 = 1) the power reflection factor is RP = 32 %. Figure 3.1 shows a
few closed ray paths for visualizing possible modes in a laser resonator.

Number of modes Inside the homogeneous resonator medium with refractive index n the wave equa-
tion (A.2) on Page 175 is solved by monochromatic homogeneous plane waves with complex amplitudes

Ψ̃(kx, ky, kz), real angular frequency ω and real propagation vector ~k = kx~ex + ky~ey + kz~ez (unit vec-

tors ~ex,y,z in respective directions). If the components of ~k are fixed, a so-called separation condition

|~k| = nω/c determines the frequency. A superposition of such waves defines all possible standing or
propagating fields.

The propagation constants into the directions of the coordinates q = {x, y, z} of Fig. 3.1 are denoted
by kq with k2 =

∑
q k

2
q = (nω/c)2. Further, the lengths Lx = d, Ly = b, Lz = L and the integers

mx,y,z = 0, 1, 2, . . . and lq = 0,±1,±2, . . . are introduced for convenience. In addition to the two transverse
field resonance conditions 2kx,yLx,y = mx,y×2π, a third longitudinal resonance condition 2kzLz = mz×2π
fits the modal phase along the z-axis. Obviously, the possible values of 0 ≤ kq ≤ k are discrete and describe
standing waves or modes,

kq = mqδkq , δkq =
π

Lq
, q = x, y, z , mq = 0, 1, 2, . . . (3.2)

Figure 3.24 on Page 91 displays a typical spectrum of resonator lines. As an example for computing
the number mq of possible laser resonator modes assume the following: A box-shaped active volume
with lengths Lq, an amplification half-power bandwidth ∆fH , a modal frequency spacing δfq, and no

9Augustin-Jean Fresnel (pronounced [Ogy"stẼ Zã fKE"nEl]), French physicist, ?Broglie (France, see Footnote 3 on Page
1) 10.05.1788, †Ville-d’Avray (France) 14.07.1827. Pioneered in optics and did much to establish the wave theory of light
advanced by Thomas Young. — Fresnel served as an engineer in various departments of France but lost his post temporarily
during the period following Napoleon’s return from Elba (1814). About that time he seems to have begun his researches
in optics. He studied the aberration of light, created various devices for producing interference fringes, and, by applying
mathematical analysis to his work, removed a number of objections to the wave theory.

10See Ref. 8 on Page 49. Sect. 4.3, Eq. (4.67)
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dispersion of the refractive index n. From Eq. (3.2) we find the estimate for the mode numbers (see also
Eq. (3.65) on Page 78)

δkq = 2π
n

c
δfq =

π

Lq
, δfq =

c

2nLq
, mqmax = max

(
1,
∆fH
δfq

)
, Mtot = 2

∏
q=x,y,z

mqmax . (3.3)

The max-function guarantees a modal count of at least 1, mq ≥ 1. The total number of modes Mtot results
from multiplying the maximum mode numbers mqmax for all three coordinate directions in 2 polarizations:
Each longitudinal mode mz can appear in a number of mxmax×mymax varieties of transverse modes, and
in 2 orthogonal polarizations. Usually, semiconductor lasers are transversely single-moded and oscillate in
one polarization only, so that Mtot = mzmax.The number of longitudinal resonator modes for a frequency
band ∆fH and associated propagation constants kz = nk0 (k0 = ω/ c) amounts to

ML = mzmax =
∆fH
δfz

= ∆fH τU , τU =
2L

c/n
. (3.4)

The quantity τU is the round-trip time (German Umlaufzeit). Equation (3.4) is the sampling theorem
of Eq. (2.4) on Page 15 in disguise: If we observe an electromagnetic field with a bandwidth ∆fH for a
time τU = 1/∆fH , then we measure amplitude and phase (or real and imaginary part) of one single
longitudinal mode. In contrast to Eq. (3.65) on Page 78, the refractive index n in Eq. (3.4) is assumed to
be frequency-independent, i. e., the resonator is dispersion-free.

In the following, we first review the basic emission and absorption processes in a microsystem (an
atom, a molecule, or an electron in the conduction band of a semiconductor), and then discuss the
conditions for light amplification and laser oscillation in a semiconductor.

3.1.1 Luminescence and laser radiation

The excitation energy W2 of any microsystem may be released by a transition to a state of lower energy
W1. This transition can be radiative by emission of a photon with energy hf = W2 −W1 (Planck’s con-
stant11 h, frequency f), or nonradiative. The transition probability depends on the quantum mechanical
properties of the microsystem, and on the interaction with an electromagnetic field. The microsystem may
also gain energy and make an upward (radiative) transition by absorbing an amount of electromagnetic

Fig. 3.2. Interaction of a two-level microsystem with electromagnetic radiation, photon energy hf = W2 − W1. (a)
absorption, (s) spontaneous emission, and (i) induced (= stimulated) emission of photons

energy hf = W2−W1. The released photon energy is emitted into any mode of the electromagnetic field.
For our present purpose the term “mode” may be associated with the resonating modes in the active
volume V . Nonradiative transitions transfer the same amount of energy to or from phonons (thermal
vibrations of the crystal lattice) or other degrees of freedom of the interacting substances. Referring to
Fig. 3.2, there are three types of interactions:

Absorption A microsystem in its ground state W1 can absorb radiation at a frequency f = (W2−W1)/h
and make an upward transition to the higher energy level W2. This absorption process is therefore
induced or stimulated by an existing electromagnetic field. The absorption rate depends on the
electromagnetic energy density, and on the number of microsystems in the ground state, Fig. 3.2(a).

11See Footnote 2 on Page 1
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Spontaneous emission An excited microsystem in level W2 can make a downward transition to the
ground state W1 “spontaneously” (apparently without any interaction) by emitting a photon with
energy hf = W2 −W1, Fig. 3.2(s). The spontaneous emission rate depends only on the number of
excited microsystems.

The term “spontaneous” needs more explanation. In a semiclassical theory, the microsystem is
treated as a quantum mechanical system, while the field description is classical. As a result, an
excited microsystem would stay in its excited state W2 for an infinite time period.

Experimentally it is observed that microsystems release their energy at random after a certain aver-
age spontaneous lifetime τsp. In quantum electrodynamics the particle (photon) nature of radiation
is formulated by a quantization of the electromagnetic field. The outcome is that the electric and
the magnetic fields ~E and ~H are connected by an uncertainty relation. Therefore, the simultaneous
states ~E(t, ~r ) = 0 and ~H(t, ~r ) = 0 for all t, ~r are impossible. However, the quantum electrodynam-

ical vacuum, as defined by the expected values ~E(t, ~r ) = 0, ~H(t, ~r ) = 0 for all t, ~r, is allowed. For

this case, the average energy density ε0 ~E2/2 + µ0
~H2/2 is finite such that the total mean energy

in each state of the electromagnetic field with a certain polarization amounts to hf/2 (zero point
energy).

This energy cannot be extracted from the system (it cannot be used to fry eggs), but the fields
fluctuating around the expectation zero represent a perturbation for an excited microsystem, and
may therefore induce random transitions to the ground state. These “spontaneously” emitted pho-
tons will be found with equal probability in any possible mode of the electromagnetic field, because
all modes possess the same zero point energy hf/2. A spontaneously emitted photon modifies an
already existing field in a mode by superimposing an additional field with a random phase thus
establishing a noise signal. Incoherent radiation of this type is called luminescence.

Spontaneous absorption (absorption induced by the zero point field fluctuation) is not an allowed
process, because the zero point energy cannot be extracted from the electromagnetic vacuum and
therefore not be transferred to a microsystem.

Induced emission A microsystem in an excited level W2 can also make a downward transition to the
ground state W1 in the presence and induced (synonym: stimulated) by an external radiation of
frequency f = (W2−W1)/h. As in the case of (induced) absorption, the emission rate depends on the
electromagnetic energy density, and on the number of microsystems in the excited state, Fig. 3.2(i).
In contrast to spontaneous emission processes (= transitions induced by zero point fluctuations) the
emitted radiation is phase coherent with the stimulating radiation. Therefore, the induced radiation
adds with the same polarization and phase to the stimulating field and becomes amplified much
like by an electronic amplifier.

Lifetime and linewidth

As explained above, spontaneous absorption is impossible. Further, a microsystem in its ground state
does not possess the energy to radiate a photon. Therefore, the lifetime of the ground state is infinite.
From quantum theoretical considerations the system energy may be determined inside the observation
time τ2 with an uncertainty ∆W2 (~ = h/(2π)),

∆W2 τ2 ≥ ~/2 , ∆f2 ≥ 1/(4πτ2) . (3.5)

If the excited state energy is not exactly known because of the finite lifetime τ2 ≤ τsp (by induced emission
the excited state lifetime may become smaller than τsp), the spontaneously emitted photon energy hf
with expectation hf0 = W2 −W1 is uncertain by ∆W2 ≥ 1

2~/τsp. Therefore, the probability density of
the spontaneous emission (luminescence spectrum) has a lineshape ρ(f) with a maximum at f = f0 and
a linewidth of ∆f ∼ 1/τsp.
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Laser action

In the presence of external radiation, the stimulated absorption probability per microsystem is the same
as the stimulated emission probability. A net emission is possible if the number of excited state microsys-
tems exceeds the number of ground state systems. This does not correspond to the normal population
distribution in thermal equilibrium, where the number of ground state microsystems is larger than the
number of excited systems, and is therefore called population inversion. Such an inversion has to be
provided by some kind of a “pump” mechanism, and is a prerequisite for light amplification. For concen-
trating next to all of the emitted photons in a narrowband spectral range smaller than ∆f2 = 1/(4πτsp),
a resonance structure as in Fig. 3.1 provides the necessary means.

Amplification and oscillation The modes of an optical resonator having a lossless transverse guiding
structure and partially transmitting mirrors at z = 0, L are characterized at a certain light resonance
frequency fS by a quality factor Q = fS/∆fS , which defines a resonator bandwidth ∆fS and a photon
lifetime τP ∼ 1/∆fS , which is caused mainly by transmission losses of the mirrors. If the resonator volume
V contains excited microsystems, the spontaneously emitted photons are collected by all resonator modes.
If the maximum of the spontaneous emission line ρ(f0) is centred at a resonator mode fS = f0, this
special mode collects a larger number NP of photons than other modes. Because the induced emission
is in proportion to NP , the emission probability increases with NP . For a population inversion condition
the induced absorptions are less than the stimulated emissions, and a net stimulated emission rate results
causing a coherent amplification of the light in mode fS .

With increasing pump rate the gain becomes higher. When the resonator losses are just compen-
sated, the so-called threshold of oscillation is reached. With increasing pump rate, the photon number
increases at first exponentially, and so does the probability 1/τ2 of stimulated emissions per second. Each
additionally excited microsystem releases its energy practically immediately after an effective lifetime
1/τ2 eff = 1/τ2 + 1/τsp, and the probability 1/τsp of spontaneous emissions per second into this mode
becomes less and less important, 1/τ2 eff ≈ 1/τ2.

Because spontaneous emission is reduced compared to induced emission, the field becomes more
coherent. The number of photons NP in the dominant resonator mode stabilizes at such a high stationary
level NP0 that practically all microsystems, which are excited additionally by the pump, release their
energy immediately by induced (coherent) emission, and the gain gets clamped at the threshold level. The
stimulated-emission photons compensate the total resonator losses. A light field develops having a near-
sinusoidal time dependence E(t) = A(t) cos [ωSt+ ϕ(t)], where amplitude A(t) and phase ϕ(t) vary slowly
on the scale of an optical period 1/fS (e. g., for a semiconductor laser fS = 193 THz at λ = 1.55µm,
1/fS = 5.2 fs). This leads to a very narrow spectral linewidth ∆fS . For a so-called d istributed f eed-
back (DFB) semiconductor laser a typical value is ∆fS = 4 . . . 40 MHz. Such laser have a narrow-band
resonator, where the feedback is established not by endface mirrors, but by a Bragg grating along the
whole resonator.

If there was a momentary increase in photon number NP > NP0, the increased stimulated emission
would deplete the population inversion, and the gain would decrease, followed by a reduction of the
photon number to NP < NP0. This being the case, stimulated emission is below its stationary value,
the pump rebuilds the inversion, and a so-called relaxation oscillation of photon number and inversion
(gain) is to be expected. This corresponds to an energy exchange between two energy reservoirs, like
with inductor and capacitor in a resonant circuit. For semiconductor lasers, relaxation oscillations of the
optical intensity occur at microwave frequencies in the order of fr = 1 . . . 30 GHz.

If there were no longitudinal resonator (R1,2 = 0 in Fig. 3.1), a wave travelling through the active
medium would be amplified. Residual mirror reflectivities R1, R2 6= 0 could lead to a regenerative oscil-
lation and have to be avoided in this case.

Modulation By changing the pump rate, the population inversion can be modified. If the light source
has no optical resonator and therefore emits only spontaneous radiation, the number of excited microsys-
tems cannot decrease faster than their lifetime τsp, and the maximum light intensity modulation frequency
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is in the order of 1/τsp if nonradiative transitions are excluded. When the lifetime τsp is reduced by ad-
ditional nonradiative processes, 1/τ2 eff = 1/τnr + 1/τsp, the limiting modulation frequency increases to
the order of 1/τ2 eff, but the radiation efficiency with respect to the pump rate decreases.

In a laser above threshold, the effective lifetime 1/τ2 eff = 1/τ2 +1/τsp � 1/τsp of the excited microsys-
tems can be made very much smaller than the spontaneous lifetime τsp by the mechanism of stimulated
emission, without paying the prize of a reduced radiation efficiency.

Noise The noise properties of a luminescent device and a laser are completely different. Spontaneous
emission represents a noise signal of the electromagnetic field with an expectation of zero and with a
non-zero intensity, very much like thermal noise from a resistor (e. g., an incandescent lamp). On the
other hand, a laser signal resembles a sinusoidal field perturbed by the noise of spontaneous emissions.
The amplitude fluctuations are relatively small because of the nonlinear amplitude control described in
Sect. 3.1.1 on Page 53 (gain clamping). The magnitude of the phase (or frequency) fluctuation depends
mainly on the resonator bandwidth.

3.1.2 Laser active materials

For a microsystem in thermal equilibrium the occupation probabilities p(Wi) of the various energy levels
Wi at any absolute temperature T are given by the Maxwell-Boltzmann statistics (ground state W1,
degeneracy gi of level Wi, Boltzmann12 constant k = 1.380 658× 10−23 Ws /K)

p(Wi) = gi e−Wi/(kT )
/∑

i
gi e−Wi/(kT ) . (3.6)

Two-level systems

For non-degenerate two-level microsystems as in Fig. 3.2, the population numbers N1,2 of a microsystem
with energy states W1,2 in thermal equilibrium are related by

N2

N1
= e−(W2−W1)/(kT ), N = N1 +N2 . (3.7)

The quantity N is the total number of microsystems. In thermal equilibrium the excited state is less
densely populated than the ground state by an exponential factor depending on the difference energy
hf = W2−W1 with respect to the thermal energy kT . With induced absorption as described in Fig. 3.2(a)
the population number N2 can be increased in proportion to the photon number NP which is available
in a resonator mode of frequency f , and in proportion to the time t. On the other hand, spontaneous
emission reduces N2 in proportion to t, and stimulated emission diminishes N2 in proportion to NP and
t. Therefore, in the presence of an electromagnetic field of photon energy hf , a dynamic equilibrium will
be reached for which the number of spontaneous and induced emissions equals the number of stimulated
absorptions. If the photon number NP is so large that spontaneous emission may be neglected, an dynamic
equilibrium state N2 = N1 (with spontaneous emission: N2 ≤ N1) may be reached so that the number
of stimulated emissions equals the number of stimulated absorptions. The medium is called transparent
in this case. However, with a strict two-level system it is impossible to achieve a gain by population
inversion.

Three-level systems

The situation is improved with a three-level system, Fig. 3.3(a). If we pump the system at an absorption
frequency f (a) = (W3 − W1)/h, microsystems can get excited from level W1 to level W3, where in
the non-degenerate case the occupation numbers are related by N3 ≤ N1. The excited microsystems
make a downward transition (releasing their energy radiatively or noradiatively) also to level W2. If

12Ludwig Boltzmann, Austrian physicist, ?Wien 20.2.1844, †Duino (Duino-Aurisina, near Trieste) 5.9.1906 (suicide).
Professor in Graz, Wien, München, Leipzig
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for a given pumping rate the transition rate 1/τ32 for W3 → W2 exceeds that of the transition rates
1/τ31 for W3 → W1 and 1/τ21 for W2 → W1, the microsystems in energy level W3 deplete (thereby
reducing the occupation number of the ground state N1 ≈ N3), and accumulate in energy level W2, so
that a population inversion with N2 > N1 and an associated net gain for the signal emission frequency
f (e) = (W2−W1)/h becomes possible. For reaching the gain threshold a very high pump rate is necessary
because the occupation number of the ground state is very high, Eq. (3.7). The pump efficiency cannot
be larger than hf (e)/(hf (a)),

ηp ≤
W2 −W1

W3 −W1
=
hf (e)

hf (a)
. (3.8)

Practically, ηp is much smaller, because not all pump photons excite microsystems with an energy W3,
and not all excited systems end up in level W2.

Fig. 3.3. Pump mechanism using energy levels (a) outside (three-level laser system) or (b) inside the energy level group of
the laser transition (pseudo-four-level laser system)

Four-level systems and semiconductors

A more efficient pumping scheme can be realized by a four-level system with pump levels W0,3 and laser
levels W2,1 because the final state W1 for the lasing transition is different from the densely populated
ground state W0. A pseudo-four-level scheme is depicted in Fig. 3.3(b). The lasing levels W2,1 split up
into closely neighbouring sublevels. According to the equilibrium distribution Eq. (3.7), the occupation
probability of the lowest energy level (=̂ W0) is highest, and of the highest energy levels (=̂ W3) lowest,
so that absorption from the lowest energy states to the highest ones is a most probable process. On
the other hand, emission from a strongly populated level (=̂ W2) to a sparsely populated level (=̂
W1) is very probable. Therefore, the maximum for absorption is found at higher frequencies (shorter
wavelengths) than the maximum for luminescence, and effective pumping may be achieved at a slightly
shorter wavelength then the lasing emission wavelength. This mechanism can be used in Erbium-doped
fibre amplifiers (EDFA), where an absorbed pump power at λ(a) = 1.48µm produces an optical gain
at the emission signal wavelength λ(e) = 1.53µm. The maximum pump efficiency in this case is ηp =
1.48µm /1.53µm = 97 % .

The scheme of Fig. 3.3(b) can be also applied to the case of a semiconductor device. Levels W2 and
W1 are to be associated with conduction and valence band states, respectively. Pump light with a photon
energy hf (a) (=̂ W3−W0) is absorbed for producing electron-hole pairs in the appropriate energy levels.
This could be also achieved with a forward biased semiconductor pn-diode by injecting electrons and
holes into the conduction and valence band, respectively, so that population inversion is reached. For a
temperature T = 0 the “pump energy” eU = hf (a) given by the forward voltage U (elementary charge
e = 1.602 177 33× 10−19 A s) would define the minimum energetic difference at which electrons and holes
could be injected, i. e., the difference of the quasi Fermi13 levels WFn −WFp = eU for electrons in the

13Enrico Fermi, Italian physicist, ?Rome 29.9.1901, †Chicago (Illinois) 28.11.1954. Professor in Rome and later in USA.
Italian-born American physicist who was one of the chief architects of the nuclear age. He developed the mathematical
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conduction band (WFn) and for holes in the valence band (WFp), respectively. The energy hf (e) of the
emitted photons is therefore smaller than WFn −WFp, but necessarily larger than the bandgap WG,

WG < hf (e) < WFn −WFp = eU , hf (a) > WFn −WFp = eU . (3.9)

While for a simplified argument we had assumed a fictitious device temperature T = 0 (however, for low
temperatures, the impurity doping of semiconductors “freezes out”14, and the device stops functioning),
the result Eq. (3.9) holds also true for arbitrary temperatures as we will see in Eq. (3.37) on Page 69.

Such a laser diode could be also used as a photodetector for photon energies hf (a) > WG without
fixing a bias voltage U . Each photo-generated electron-hole pair is separated by the field inside the pn-
junction and induces a current with a time integral e in the external circuit. Basically, this unbiased diode
represents a solar cell.

3.1.3 Compound semiconductors

In Sect. 3.1.2 we had discussed which properties a material should have for the generation and amplifica-
tion of light. Here, we specify important properties of the III-V compound semiconductors (Ga,Al)(As,Sb)
and (In,Ga)(As,P). The bandgap WG (and hence the bandgap wavelength λG and the refractive index
n) depend on the composition. The lattice constant may be chosen to match the lattice constant of a
binary substrate semiconductor. Lattice matching is very important for several reasons:

• A close lattice match is necessary in order to grow high-quality crystal layers.

• Excess lattice mismatch between the heterostructure layers results in crystalline imperfections which
lead to nonradiative recombination and thus prevent lasing.

• Lattice mismatch causes degradation in devices during operation.

Elemental semiconductors as Si and Ge have a diamond structure, while compound semiconductors as
GaAs or InP have a zinc-blende structure. Having no inversion centre, the crystals of the zinc-blende
type show a linear electro-optic effect, so these substances my be also used to construct modulators and
switches.

Figure 3.4 shows the bandgap WG and the lattice constant a for two compound material systems.
Tables 3.1 and 3.2 summarize the numerical values. With ternary compound crystals (see Table 3.1, Fig.
3.4), active (Ga1−xAlx)As layers slightly mismatched to a GaAs substrate may be grown for laser diode
emission wavelengths λ = 0.69 . . . 0.87µm.

Using quaternary compound crystals (Ga1−xAlx)(AsySb1−y) lattice-matched to a GaSb-substrate,
laser diodes can be fabricated emitting at λ = 1.25 . . . 1.71µm; this material is also well suited for long-
wavelength detectors. For photodetectors, indirect semiconductors are applicable, and lattice-matched
compound crystals on GaSb may be grown, leading to an absorption energy WG = 0.726 . . . 1.6 eV,
λG = 1.71 . . . 0.78µm. There is an miscibility gap of unknown extent for compound crystals with similar
concentrations of As and Sb.

With the material system (In1−xGax)(AsyP1−y) laser diodes and photodiodes are grown on lattice-
matched InP substrates (λ = 0.92 . . . 1.65µm). With GaAs substrates, emission wavelength in the region
λ = 0.87µm (GaAs) down to λ = 0.68µm (In0.49Ga0.51P) become possible. High-quality GaAs substrates
are available with relatively large wafer diameters of 3 in (8 cm) and 4 in (10 cm). GaAs-based integrated
circuits are a standard technique, and so the construction of optoelectronic integrated circuits with
(In,Ga)(As,P), lattice-mismatched to a GaAs substrate, λ = 1.3µm =̂ 0.95 eV could mature to become a
cost-saving alternative. Much more expensive is the processing of (In,Ga)(As,P) on typically 2 in (5 cm)
InP substrates, λ = 1.55µm =̂ 0.8 eV.

statistics required to clarify a large class of subatomic phenomena, discovered neutron-induced radioactivity, and directed
the first controlled chain reaction involving nuclear fission. He was awarded the 1938 Nobel Prize for Physics, and the Enrico
Fermi Award of the U. S. Department of Energy is given in his honour.

14See Footnote 19 on Page 60
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Fig. 3.4. Material systems (Ga1−xAlx)(AsySb1−y) and (In1−xGax)(AsyP1−y), bandgaps and lattice constants. Dotted
region: indirect semiconductor (Bandabstand =̂ bandgap)

Semiconductor WG/ eV (λG/ µm) n at λG a/Å

GaSb, direct 0.726 (1.708) 3.82 6.096
GaAs, direct 1.424 (0.871) 3.655 5.653
AlSb, indirect 1.58 (0.785) 3.4 6.135
AlAs, indirect 2.163 (0.573) 3.178 5.660
(Ga1−xAlx)As 1.424 + 1.247x 3.59− 0.71x+ 5.653 + 0.027x
direct: x ≤ 0.3 1.424 . . . 1.798 +0.091x2

(0.871 . . . 0.69) (at λ = 0.9µm)
(Ga1−xAlx)(AsySb1−y) 0.726 + 0.834x+ ? 6.096
lattice-matched to GaSb +1.134x2

direct: x ≤ 0.24 0.726 . . . 0.991
y = x/1.11 (1.708 . . . 1.25)

Table 3.1. Material system (Ga1−xAlx)(AsySb1−y). WG bandgap, λG = hc/WG bandgap wavelength, n refractive index,
a lattice constant

Semiconductor WG/ eV (λG/ µm) n at λG a/Å

InAs, direct 0.36 (3.444) 3.52 6.058
InP, direct 1.35 (0.918) 3.45 5.869
GaAs, direct 1.424 (0.871) 3.655 5.653
GaP, indirect 2.261 (0.548) 3.452 5.451

(In0.49Ga0.51)P, direct 1.833 (0.676) 3.451 ? 5.653
lattice-matched to GaAs
(In0.53Ga0.47)As, direct 0.75 (1.653) 3.61 5.869
lattice-matched to InP
(In1−xGax)(AsyP1−y) 1.35− 0.72 y+ 3.45 + 0.256 y − 5.869
lattice-matched to InP +0.12 y2 −0.095 y2

direct: y ≤ 1 1.35 . . . 0.75
x = y/(2.2091− 0.06864 y) (0.918 . . . 1.653) 3.45 . . . 3.61

Table 3.2. Material system (In1−xGax)(AsyP1−y). WG bandgap, λG = hc/WG bandgap wavelength, n refractive index,
a lattice constant

3.1.4 Semiconductor physics

The simplest laser diode structure is a pn-homojunction biased with a forward current I, Fig. 3.5. Spon-
taneously emitted light leaves the active layer in all possible directions. The field is guided in the active
region strip waveguide and reflected from the cleaved end facets at z = 0, L, which form a Fabry-Perot
resonator. To understand the device properties, we have to recall some semiconductor basics in the fol-
lowing.
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Fig. 3.5. Forward biased semiconductor pn-homojunction acting as a laser diode. Side-walls are saw-cut, the end facets are
cleaved. Typical dimensions: d = 0.1 . . . 0.2µm (active layer), b = 3 . . . 6µm, L = 200 . . . 600µm

Energy bands and density of states

Let us consider a linear crystal consisting of a chain of N equal atoms spaced a lattice constant a apart
having a length L = Na. Each isolated atom contributes a single bound electron with energy levels W ′i . If
the N atoms interact, the N electrons do not remain bound to a fixed atom, but belong collectively to the
crystal and assume N energy states Wiµ near W ′i . This splitting of energies is in analogy to the coupling
of identical resonance circuits to form a bandpass filter. The probability density function wiµ(~r ) to find
an electron of energy Wiµ at a position ~r is given by the modulus squared of the quantum mechanical
wave function Ψiµ(~r ) (probability density amplitude, Schrödinger15 function),

Ψiµ(x) =
1√
L
ui(kµ, x) e j kµx, ui(kµ, x) = ui(kµ, x+ a), kµ = µ

2π

Na
, (3.10)∫ L

0

|Ψiµ(x)|2 dx = 1, Wiµ = Wi(kµ), N values for µ = 0,±1,±2, . . . , (N − 1)/2 .

The functions differ from each other by a parameter kµ = µ × 2π/L having N discrete values. This is
analogous to the number of longitudinal modes in a resonator16, see Eq. (3.2) on Page 50. The higher
the electron energy becomes, the less it is influenced by the periodic atomic potentials, and the lattice-
periodic function ui(kµ, x) approaches asymptotically one. A free electron of mass m moving in a constant
potential W0 has an energy W0 + p2

µ/2m given by its mechanical momentum pµ. It may be described by
a probability density wave with a de Broglie17 wavelength λµ = h/pµ, so that

kµ =
2π

λµ
=

2π

h
pµ =

pµ
~
, ~kµ = pµ, W = W0 +

p2
µ

2m
= W0 +

~2k2
µ

2m
. (3.11)

For a free electron, the product ~kµ denotes the mechanical momentum pµ, which justifies the plane-wave
ansatz Eq. (3.10). For crystal electrons the quantity ~kµ cannot be interpreted as an electron momentum,
but in interactions with photons it represents an invariant together with the photon momentum p = h/λ =
~k for a field of wavelength λ and propagation constant k. Therefore ~kµ is called the crystal or pseudo
momentum. The number of possible mutual exclusive electron energy states is 2N regarding the spin
degeneracy. The N energy eigenvalues Wi(kµ) represent the bandstructure of the band i, which resulted
from the level W ′i of the isolated atom. The function Wi(kµ) is periodic in kµ with a period 2π/a and

15See Footnote 20 on Page 20
16As is common in semiconductor physics, the modal index µ takes positive and negative values in contrast to Eq. (3.2),

where mq is non-negative. Therefore, the relation kµ = µ × 2π/ (Na) has an additional factor 2 as compared to kz =
mz × π/Lz in Eq. (3.2).

17See Footnote 3 on Page 1
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may be therefore restricted to a region −π/a < kµ ≤ π/a (first Brillouin zone). The bandstructure Fig.
3.6 has the symmetry property Wi(kµ) = Wi(−kµ) and possesses extrema at the borders of the Brillouin
zone. The topmost band which is fully occupied at T = 0 is called valence band (VB), the lowest band

Fig. 3.6. Bandstructures of conduction band (CB, German Leitungsband, LB) and valence band (VB) of an (a) indirect
semiconductor and of a (b) direct semiconductor. Minimum bandgap energy WG, bandgap energy W ′G for an indirect
semiconductor at kµ = 0

which is empty for T = 0 is called conduction band (CB, German Leitungsband, LB). The difference
between the lowest energy level of the CB and the highest energy state of the VB is denoted as bandgap
energy WG = WC −WV . Because of thermal excitation at T > 0 the lowest CB states are occupied while
the highest VB states are empty. For a transition WC → WV in an indirect semiconductor the crystal
momentum changes by an amount of ~kµ = ~π/a, which cannot be transferred to the emitted photon
with momentum ~k = ~×2π/λ because the lattice constant is much smaller than the wavelength, a� λ.
So a phonon as a third interaction particle with sufficient momentum is necessary, but this tree-particle
scattering is less probable than a two-particle interaction. Therefore the emission (and the absorption)
of photons at energies slightly larger than hf = WG is a very unlikely process.

The elemental semiconductors Ge and Si are indirect semiconductors and therefore unsuitable for
efficient light sources, Fig. 3.6(a). However, they may be successfully used for photodetectors, because the
low indirect-semiconductor absorption probability may be effectively increased by an extended interaction
length (i. e., by a longer absorption region). If the photon energy becomes larger than W ′G, the absorption
becomes very likely, because electron transitions with constant momentum near kµ = 0 are possible. For
the bandgap energies the following values hold:

WG =

{
0.67 eV =̂ 1.85µm (Ge)
1.13 eV =̂ 1.10µm (Si)

W ′G =

{
0.8 eV =̂ 1.55µm (Ge)
3.4 eV =̂ 0.36µm (Si)

(3.12)

In direct semiconductors, Fig. 3.6(b), the transitions from the lower CB edge to the upper VB edge
and vice versa are possible for a constant crystal momentum ~kµ = 0. These processes are therefore very
likely, so that direct semiconductors may be used both for light sources and for detectors.

Consider a direct semiconductor Fig. 3.6(b). In the vicinity of kµ = 0 the actual bandstructure may
be approximated by a parabola,

W = Wi(kµ) = Wi(0) +
1

2

d2Wi

dk2
µ

k2
µ = W0 +

p2
µ

2meff
= W0 +

~2k2
µ

2meff
, (3.13)

defining an effective mass meff which should be attributed to a free electron at the same energy. The
effective mass is negative for crystal electrons at the upper VB edge. An electron with charge (−e) and
effective electron mass mn = meff < 0 can be equivalently replaced by a so-called hole (a missing state
not occupied by an electron) with positive charge (+e) and effective hole mass mp = |meff| > 0.

For laser action the population of the CB and VB edges of direct semiconductors near kµ = 0 is
important. If Z stands for the number of electron states with 2 spin directions and a modulus of the
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crystal momentum up to pµ = ~kµ, we have in analogy to Eq. (3.3) on Page 51

Z =
2Vφ
h3

, Vφ = V Vp, Vp =
4π

3
(~kµ)3, ~kµ = pµ =

√
p2
x + p2

y + p2
z . (3.14)

In kµ-space the differential volume in a kµ-radius interval kµ . . . kµ + dkµ is d3 kµ = 4πk2
µ d kµ, and the

differential number of states dZ which corresponds to an energy interval W . . .W + dW amounts to

dZ = 2V
1

(2π~)3 4π(~kµ)2 d(~kµ) = 2V
1

(2π)
3 d3 kµ = V ρ (W ) dW . (3.15)

Using Eq. (3.13) we find for the so-called density of states (DOS) ρ (W ),

ρ(W ) =
1

V

dZ

dW
=

1

V

dZ

dpµ

dpµ
dW

=
1

2π2

(
2|meff|
~2

)3/2√
±(W −W0) . (3.16)

For the CB we take the positive sign
√

+(W −W0) and W0 = WC , |meff| = mn, and for the VB the

negative sign
√
−(W −W0), W0 = WV , |meff| = mp. The effective density of states NB is defined as

dZ

dW
kT = V

2√
π
NB

√
±W −W0

kT
, NB = 2

(
2π|meff|kT

h2

)3/2

. (3.17)

Because
∫W0+kT

W0

√
W−W0

kT
dW
kT =

∫ 1

0

√
W ′ dW ′ = 2

3 holds, we find 1
V

∫W0+kT

W0
dZ = 2√

π
2
3NB ≈ 0.752×NB .

Therefore the effective density of states NB specifies approximately the density of states inside an energy
interval W0 . . .W0±kT measured from the band edge energy W0. The effective DOS near the conduction
and valence band edges are NC and NV , respectively. With the free electron rest mass m0 and the
effective carrier masses for GaAs and InP at T = 293 K we find the values specified in Table 3.3. A doped

mn/m0 mp/m0 NC/ cm−3 NV / cm−3

vacuum 1 – 2.42× 1019 –

GaAs 0.067 0.48 4.20× 1017 8.05× 1018

InP 0.077 0.64 5.17× 1017 1.24× 1019

Table 3.3. Examples for effective masses and effective DOS (T = 293 K)

semiconductor18 in the saturation range19 is called degenerately doped, if the dopant concentration is
larger than the effective DOS NB ; in this case the Fermi level moves into the band.

Filling of electronic states

In a quantum mechanical treatment, particles fall in two categories20: fermions and bosons. Particles like
photons and phonons are bosons having integer spins 0, ~, 2~, . . . Particles such as electrons are fermions
with spins ~/2, 3~/2, 5~/2 . . . This subtle difference forces a very important distinction on the occupation
statistics. Only one fermion can occupy a quantum state, while any number of bosons can be placed in
a particular state. This is the reason why electromagnetic fields can be amplified.

At the absolute temperature T = 0 the electrons fill the lowest energy states. At T > 0 the distribution
which minimizes the free energy of the system is, for fermions, the Fermi-Dirac21 distribution (Fermi22

18Singh, J.: Physics of semiconductors and their heterostructures. New York: McGraw-Hill 1993
19See Ref. 18 on Page 60, Sect. 8.4.2 Page 270:

”
In general, there are three regions of interest for doped (extrinsic)

semiconductors. At very low temperatures, the electrons (holes) are trapped at the donor (acceptor) levels and the free
carrier density goes to zero. This region is called the freeze-out range. At higher temperatures, the shallow levels are
ionized and there is little change in free carrier density. This region is called the saturation range. Finally, at very high
temperatures, the intrinsic carrier density exceeds the doping levels and the carrier density (n ≈ p) increases exponentially
as for an intrinsic material. The higher the bandgap, the higher the temperature where this regime takes over. However,
electronic devices cannot operate in this regime.“

20See Ref. 18 on Page 60
21Paul Adrien Maurice Dirac, physicist, ?Bristol 8.8.1902, †Tallahassee 20.10.1984 (Florida). Nobel prize 1933 (together

with E. Schrödinger)
22See Footnote 13 on Page 55
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function for short),

f(W ) =
1

1 + g exp
(
W−WF

kT

) , g =

 1 band states
1/2 donor states
2 acceptor states

. (3.18)

For impurities, a degeneracy factor23 g has to be taken into account. Figure 3.7 displays the Fermi
function for band states. Here WF is called the chemical potential or Fermi energy, and it represents the
energy where the occupation probability f(W ) becomes 1/2 at all temperatures. The transition from a
large to a low occupation probability (0.88 ≥ f(W ) ≥ 0.12) takes place in a region 4kT centred at the
Fermi energy WF (at T = 293 K we have kT = 25 meV or ∆f = 2kT/h = 12.1 THz). In addition to the
quantum statistics Eq. (3.18), we also have the classical statistics of Boltzmann24 which can be derived
from Eq. (3.18),

f(W ) ≈ g exp
(
−W−WF

kT

)
for W −WF > 3kT ,

f(W ) ≈ 1− g exp
(
W−WF

kT

)
for W −WF < −3kT .

(3.19)

The residual error is smaller than 5 % (e3 ≈ 20), if the Fermi level has an energetic distance from the band
edges WC , WV of at least three times the thermal energy kT . Especially for undoped semiconductors the
approximation is very good.

Fig. 3.7. Fermi function for band energy states (g = 1)

Impurities and doping

The density nT of CB electrons and the density p of VB holes may be calculated with the help of the
DOS Eq. (3.16), the effective DOS Eq. (3.17) and the Fermi distribution Eq. (3.18),

nT =

∞∫
WC

ρC(W ) f(W ) dW p =

WV∫
−∞

ρV (W )
[
1− f(W )

]
dW . (3.20)

23A donor electron has one of two possible spin orientations. For the occupation of the state with an electron there are
two favourite cases (spin + ~/2, spin − ~/2) out of three possibilities (electron at donor, i. e., spin + ~/2, spin − ~/2; no
electron at donor). Therefore we have f(WF ) = 2/3 for a donor at W = WD = WF , Eq. (3.18).
Acceptors bind an electron with a well-defined spin to fill up the outmost shell. For the transition of an electron to an acceptor
atom there is one favourite case (fitting spin) out of three possible cases (electron transition to acceptor with fitting spin,
no VB electron available with fitting spin, no electron transition to acceptor at all). As a consequence, f(WF ) = 1/3 for an
acceptor at W = WA = WF , Eq. (3.18).

24See Footnote 12 on Page 54
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With the Boltzmann approximations (valid for nT � NC , p� NV only, i. e., for non-degenerate doping)
the integrals Eq. (3.20) can be solved,

nT = NC exp

(
−
WC −WF

kT

)

p = NV exp

(
−
WF −WV

kT

)
 nT p = n2

i = NCNV exp

(
−WG

kT

)
. (3.21)

The intrinsic carrier concentration ni refers to the electrons nT (holes p) present in the CB (VB) of a
pure undoped semiconductor. It depends on the bandgap WG as well as the details of the band edge
masses, but not on the Fermi energy WF ; this is a relation expressing the law of mass action. At T = 0
the VB is completely occupied while the CB is empty, and the semiconductor has an extremely high
resistance. With increasing temperature some electrons are thermally excited from the VB to the CB so
that CB electrons and VB holes are generated in pairs, nT = p = ni. The presence of intrinsic carriers is
detrimental to devices25 where the current has to be modulated by some means. The Fermi level follows
from Eq. (3.21) for charge neutrality nT = p,

WF =
1

2
(WC +WV ) + kT ln

√
NV
NC

=
1

2
(WC +WV ) +

3

4
kT ln

mp

mn
. (3.22)

At T = 0 the chemical potential WF of the intrinsic semiconductor is in the centre of the forbidden band,
at T > 0 the Fermi level shifts into the direction of the faster filling band which owns the smaller effective
DOS NB .

Pure semiconductors would have little use by themselves because of their low conductivity (carrier
concentration at room temperature ∼ 1011 cm−3) compared to metals (∼ 1021 cm−3). By introducing
impurities the properties of semiconductors may be tailored to specific needs. When a dopant (impurity)
atom is implanted into a crystal, its perfect periodicity is destroyed and additional energy levels for
electrons located near the band edges are the outcome. These levels are either near the CB edge (WD)
and can “donate” an electron to the CB (donor), or they are near the VB edge (WA) where they can accept
an electron from the VB (acceptor). The donor (acceptor) concentrations are nD (nA), the concentrations
of the neutral donor (acceptor) atoms are n×D (n×A), and the concentrations of the ionized impurities are
n+
D (n−A). Thus, either a quasi-free CB electron or a quasi-free VB hole is created when the impurity atoms

give or take an electron by thermal excitation for |WC,V −WD,A| < kT , Fig. 3.8. For a large impurity
concentration Fig. 3.8(b),(c) the impurity levels broaden to form impurity bands which may overlap with
the CB or the VB, respectively. In this case, the bandgap is decreased to WGeff

, and the DOS ρ(W )
cannot be approximated by a parabola near the band edges in Eq. (3.16). Equation (3.21) remains valid.
The Fermi level WF can be computed from Eqs. (3.18), (3.20), (3.21) in the case of charge neutrality,

nT + n−A = p+ n+
D

nD = n×D + n+
D donor density,

nA = n×A + n−A acceptor density.
(3.23)

If for donors (WC−WD)/(kT )� 1 is valid (saturation, practically all donors are ionized), and if nD > NC ,
then the Fermi energy WF is shifted into the CB. An analogue relation holds for acceptors.

For a non-equilibrium condition where a constant perturbation is switched on, the carriers in the
CB and VB states need some time to re-arrange. This time is called the intraband relaxation time τCB,

25Some intrinsic carrier concentrations at room temperature T0 = 293 K: ni Si = 1.5×1010 cm−3, niGe = 2.4×1013 cm−3,
niGaAs = 1.8 × 106 cm−3 (actually not achievable), ni InP = 1.2 × 108 cm−3. “The fact that n2

i is constant at a given
temperature is often utilized to produce high resistivity (insulating) materials from impure semiconductors. Consider, for
example, impure GaAs with nT = 1016 cm−3 and p = 105 cm−3 giving a total free carrier density nT + p = 1016 cm−3 and
n2
i = nT p = 1021 cm−6 (ni = 3.2× 1010 cm−3) at 180 ◦C. If the p-type carrier concentration is now increased by doping to

3.2× 1010 cm−3, the sum concentration becomes nT + p ≈ 6.4× 1010 cm−3 since the nT p product must remain the same.
The Fermi level shifts into the direction of the forbidden-band centre. This greatly reduces the material conductivity. This
technique is called compensation. It must be remembered, of course, that the nT p product is constant only when the system
is in equilibrium.” Sect. 8.1 in Ref. 18 on Page 60
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Fig. 3.8. Energy levels of impurities in a semiconductor. (a) isolated donors and acceptors. (b) impurity bands for heavier
doping. (c) overlap of impurity bands with CB annd VB for heavy doping (WL =̂ WC , Leitungsband =̂ conduction band)

τVB. For example: At t = 0 we have a constant field strength ~E in the semiconductor. After a transit
time τ the electron drift velocity is ~vn = −µn ~E (mobility µn, expectation of electron velocity ~vn). If the
relaxation follows the function exp(−t/τ), then the time constant τ corresponds to the re-arrangement
time of the electrons with respect to the CB states, and τ = τCB is called the momentum relaxation
time. In terms of the intraband relaxation times, the mobilities of electrons and holes are µn = eτCB/mn

and µp = eτVB/mp. For InP we find µn = 4 600 cm2 /V, mn/m0 = 0.077, m0 = 9.109 387 9 × 10−31 kg,
e = 1.602 177 33 × 10−19 C from Table 3.3 on Page 60, and τCB = 0.2 ps follows. After this time has
passed, the occupation probability may be again described by the Fermi distribution f(W ) Eq. (3.18).
However, because nT , p assume different values than in the equilibrium case, the Fermi energy WFn

of the electrons in the conduction band (i. e., the energy state with electron occupation probability
fC(WFn) = 1/2) differs from the Fermi level WFp of valence band holes (i. e., from the energy state with
hole occupation probability fV (WFp) = 1/2). The quantities WFn and WFp are therefore denoted as
quasi Fermi levels for electrons and holes in the non-equilibrium case. The occupation probabilities for
conduction band electrons and valence band holes read now

fC(W ) =
1

1 + exp

(
W −WFn

kT

) , fV (W ) =
1

1 + exp

(
W −WFp

kT

) . (3.24)

After the intraband relaxation time τLB the conduction band electrons are in a new dynamic equilibrium
as it is the case for the valence band holes when the intraband relaxation time τVB has passed. However,
the conduction band electrons are not in equilibrium with the valence band holes, WFn 6= WFp. Analogue
to Eq. (3.21) we find

nT = NC exp

(
−
WC −WFn

kT

)
p = NV exp

(
−
WFp −WV

kT

)


nT p = n2
i exp

(
WFn −WFp

kT

)
n2
i = NCNV exp

(
−
WG

kT

)
.

(3.25)

In Sect. 3.1.2 Eq. (3.9) on Page 56 it was made plausible that laser action in a semiconductor laser requires
the photon energy to be inside the bounds WC −WV < hf ≤ WFn −WFp, so that either the condition
WFn ≥ WC or WFp ≤ WV must be met. Following Eq. (3.25) the necessary pump can be realized by
carrier injection with nT p � n2

i . Then an increased radiative recombination rate leads to an increased
emission of spontaneous photons compared to the case of true thermal equilibrium. From Eq. (3.20) we
have

dnT
dW

= ρC(W ) fC(W ),
dp

dW
= ρV (W )

[
1− fV (W )

]
. (3.26)
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Fig. 3.9. Distribution of valence band holes and conduction band electrons under non-equilibrium conditions nT p � n2
i

for an inverted semiconductor at T > 0. The areas under the dp/dW and dnT / dW curves stand for the hole and electron
concentrations p and nT in the valence and in the conduction bands, respectively. The arrow marked by hf indicates the
maximum photon energy at which optical amplification is still achieved, see Eq. (3.9) on Page 56. (ρL =̂ ρC conduction
band DOS)

Figure 3.9 shows the distribution of holes and electrons inside the bands of a population inverted semi-
conductor laser, and the maximum photon energy hf = WFn −WFp at which an optical amplification is
still possible. This will be discussed in more detail on Page 67 ff.

To calculate the threshold current of a laser, we need the carrier concentrations nT , p for shifting the
quasi Fermi levels WFn, WFp into the bands. We assume a p-doped semiconductor with an equilibrium
concentration of nT0, p0 and nT0p0 = n2

i . By carrier injection the densities are changed to nT = nT0 +
∆nT , p = p0 +∆p. By substitution into Eq. (3.25) we find

WFn −WF = kT ln

(
1 +

∆nT
nT0

)
, WF −WFp = kT ln

(
1 +

∆p

p0

)
. (3.27)

Further, we assume charge neutrality ∆p = ∆nT . By a carrier injection the quasi Fermi level of the
minority carriers shifts first (here: WFn; change of nT by ∆nT has largest effect because nT0 is small). At
∆nT /nT0 = 1 the shift amounts to WFn −WF = 0.7 kT . Because p0 � nT0 holds in a p-semiconductor
the quasi Fermi level for majority carriers starts to shift at much higher injection current levels when
∆p = ∆nT reaches the order of p0.

Heterojunctions

Heterojunctions are composed of semiconductors with different bandgap energies WG. They are advanta-
geous for laser diodes and photodetectors. With (Ga1−xAlx)As of Table 3.1 and 0 ≤ x ≤ 0.3 the bandgap
energy WG can be increased by 374 meV while the refractive index n decreases by nearly 6 %. Lasers
are built as 3-layer or 5-layer heterostructures, Fig. 3.10. For the 3-layer heterostructure Fig. 3.10(a) the
active layer (the region with induced amplification) has a thickness of d = 0.1 . . . 0.2µm and consists of
p-GaAs. A slight p-doping26 decreases the electron concentration in the valence band, thereby facilitating
a population inversion. The neighbouring layers are formed of (Ga,Al)As having a larger bandgap WG

and a lower refractive index n leading to the following features:

Potential walls exist for carriers nT , p injected from both sides of the p-GaAs layer. Even from low
current densities J > 0.5 kA / cm2 onwards the carrier concentration nT inside the active layer is
so large that the difference of the quasi Fermi levels exceeds the bandgap, WFn −WFp > WG, and
laser action starts (for GaAs at about nT = 2× 1018 cm−3).

Larger WG in the (Ga,Al)As layers blocks the induced re-absorption in the non-inverted regions.

Smaller n in the (Ga,Al)As layers characterizes the cladding of a slab waveguide where the core is
represented by the active layer. Because d is small, a large portion (≈ 80 %) of the electromagnetic
energy propagates inside the cladding (field confinement factor Γ ≈ 20 %).

26See Footnote 25 on Page 62
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Fig. 3.10. Schematic refractive index dependence n and bandgap WG as a function of the spatial coordinate x in a (a) 3-
layer heterostructure, (b) 5-layer heterostructure

For a 3-layer structure both the carrier and the field confinement are determined by the thickness d
of the active layer, and by WG (i. e., by the refractive index n) of the three central layers. The actual
pn-junction is between the p-GaAs active layer and the neighbouring n-(Ga,Al)As layers. Devices with
heterojunctions on both sides of the active zone are called double-heterostructures.

With a 5-layer heterostructure Fig. 3.10(b) the carrier confinement and the vertical field confinement
in x-direction become independent. The field is guided by two (Ga,Al)As layers on each side of the active
zone. Fortunately, the refractive index n in (Ga,Al)As depends only weakly on the doping (∼ 0.1 %).

Heterojunctions are called “isotype” if the semiconductors have the same conduction type, and “aniso-
type” if the conduction type differs. The conduction type is specified with small letters n, i, p if the
semiconductor has a smaller bandgap than its neighbour, and with capital letters N, I, P if the bandgap
is larger. For the structure in Fig. 3.10(a) we see the following junction types from top to bottom: nN,
Np, pP and Pp. In the following, we discuss some heterojunction properties in analogy to the ordinary
pn-junction.

Band diagram for heterostructures Figure 3.11(a) explains the energy scale. Free electrons are at
the vacuum energy level W = 0 if they move at a velocity ~v = 0 in a region with constant potential ϕ = 0;
in Fig. 3.11(a) we further assume a potential ϕ 6= 0. Electrons leaving the semiconductor with ~v = 0 are

Fig. 3.11. Energy scale for electrons in a semiconductor. (a) Semiconductor at potential ϕ 6= 0. (b) Two independent,
insulated semiconductors at potential ϕ = 0 with different bandgaps. Wχ electron affinity, Wφ work function. WL conduction
band edge (=̂ WC , Vacuumniveau =̂ vacuum level)
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then at the vacuum energy level W = −eϕ. The electron affinity Wχ specifies the energetic distance from
the CB edge to the vacuum level. The work function Wφ is defined by the energy difference of the Fermi
and the vacuum level. All these quantities together with the bandgap WG = WC −WV are positive by
definition. Wχ, Wφ and WG fix the energetic distances of the CB edge, the Fermi level and the VB edge
in relation to the vacuum level.

In Fig. 3.11(b) the energy-band diagrams of two semiconductors with different bandgaps are displayed.
After forming the contact we have a Np-junction as in Fig. 3.10(a). Assuming ϕ = 0 for both separated
semiconductors we define the quantities

∆WG = WG2 −WG1 ,

∆WC = WC2 −WC1 = Wχ1 −Wχ2 ,

∆WV = WV 2 −WV 1 = ∆WC −∆WG .

(3.28)

In the case of Fig. 3.11(b). the relations ∆WG, ∆WC < 0 and ∆WV > 0 hold. For (Ga1−xAlx)As with
0 ≤ x ≤ 0.3 we find nearly independently of x

∆WC

∆WG
= 0.65 ,

∆WV

∆WG
= −0.35 . (3.29)

For each of the (non-degenerate) semiconductors in Fig. 3.11(b), Eqs. (3.21)–(3.23) are valid. When the
contact is formed all states of equal energy are occupied with the same probability in the case of thermal
equilibrium. If we fix the potential of semiconductor 2 at ϕ2 = 0, the potential of semiconductor 1
rises until eϕ1 + Wφ1 = Wφ2, i. e., the potential is given by the so-called built-in potential UD = ϕ1 =
(WF1 −WF2)/e > 0 (German Diffusionspannung). From Eq. (3.21) we calculate

eϕ1 = WF1 −WF2 = WC1 −WV 2 + kT ln
nT1p2

NC1NV 2
= WG1 −∆WV + kT ln

nT1p2

NC1NV 2
. (3.30)

Under the assumption of shallow saturated impurities with nT1 = nD, p2 = nA, we find from Eq. (3.21)
for a homojunction the diffusion voltage or built-in potential UD of the pn-junction (UT is the thermal
voltage)

ϕ1 = UD = UT ln
nDnA
n2
i

, UT =
kT

e
, WG = −kT ln

n2
i

NCNV
. (3.31)

At room temperature T = 293 K the thermal voltage is UT = 25 mV. Figure 3.12 (not drawn to scale)
shows the band-energy diagram of the NpP-heterojunction of Fig. 3.10(a) in the case of thermal equi-
librium; we used the semiconductors of Fig. 3.11(b), supplemented by a p-semiconductor with electron
affinity Wχ1 and bandgap WG1. The doping of the p-(Ga,Al)As layer was chosen such that the diffusion
voltage of the isotype pP-junction is zero, UD pP = 0. The band edge energies (and therefore the carrier
concentrations) are not continuous but exhibit steps by |∆WC |, |∆WV |, see Eq. (3.28). The component

of the dielectric displacement vector ~D = ε0εr ~E perpendicularly to the boundary plane is continuous
while the refractive index n =

√
εr is discontinuous. Therefore, the normal component of the electric field

vector ~E = − gradϕ is also discontinuous. This leads to a kink of the vacuum level at the semiconductor
boundary; the slope inside the semiconductor with the larger WG (smaller n) is larger than inside the
semiconductor with the smaller WG.

Figure 3.13 displays the energy-band diagram from Fig. 3.12 assuming the flat-band case for simplicity.
However, because of unavoidable series resistances it is practically impossible to adjust an external forward
voltage such that the junction voltage U compensates the diffusion voltage UD from Fig. 3.12. Far away
from the junction the quasi Fermi levels of electrons and holes are practically identical. However, inside
the thin p-GaAs layer and inside the diffusion zones we have WFn > WFp due to the carrier injection.
Because of the longer diffusion length of electrons compared to the diffusion length of holes, Ln > Lp, the
diffusion zone of the p-semiconductor is larger than inside the n-semiconductor (for GaAs: Ln/Lp = 5).
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Fig. 3.12. Energy-band diagram of a double-heterostructure with anisotype Np-junction and a special isotype pP-junction
with diffusion voltage zero (WL =̂ WC , Leitungsband =̂ conduction band, Vakuumniveau =̂ vacuum level, Raumladungszone
RLZ der Breite null =̂ space-charge region of zero width)

Fig. 3.13. Energy-band diagram of a NpP-heterojunction of Fig. 3.12 with a forward bias voltage. Lp/Ln ≈ 0.2 for GaAs
(WL =̂ WC)

Electrons and holes are confined to a potential film27 (quantum film) inside the p-GaAs layer. In Fig.
3.13 the quasi Fermi level for electrons WFn was moved into the CB. By appropriate injection (pump)
currents, the semiconductor may be population inverted, see Eq. (3.9).

Emission and absorption of light in a semiconductor

General considerations Let us assume a microsystem according to Fig. 3.3(a) with energy levels
W2,W1 and W2 = W1 + hf . The electromagnetic field in the active optical volume V is given as an

27This quantum film, a thin layer between layers with larger bandgaps, confines electrons in one direction only (the
growth direction). Nonetheless, the structure is usually called a potential or quantum “well”. However, according to common
understanding, a well has a two-dimensional cross-section and confines water (or electrons in our case) in two orthogonal
directions.
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expansion of orthonormal modes with total number Mtot, Eq. (3.3) on Page 51.
A certain mode with frequency f (photon energy hf) contains NP photons. As a result of a first-order

perturbation theory28 (dubbed “Fermi’s Golden Rule”) we find the probabilities for the induced (p
(e)
ind)

and spontaneous (p
(e)
sp ) photon emission or absorption of a microsystem, which is initially in the excited

state or in the ground state, respectively,

p(e) = p
(e)
ind + p(e)

sp ∼ (NP + 1) t , p(a) ∼ NP t (3.32)

The relations are asymptotically valid for t→∞, because only then the excited state has a well defined
energy. Spontaneous transitions which are independent of the photon number NP are only possible for
emission, see the discussion on Page 52.

The transition probability p = 1 specifies the lifetime τ of the energy state. The energy is conserved
for the transition if t, τ → ∞ holds, p(e), p(a) ∼ δ(W2 −W1 − hf). If the interaction time t is finite, the
δ-function of the Golden Rule changes over to a broadened function ρ(f) so that in this case the energy
conservation is no longer strictly satisfied.

Note that according to Eq. (3.5) the energy uncertainty for τ2 = 0.1 ps is about ∆W2 = 5 meV =̂
6 THz. Spontaneously emitted photons occupy at random all electromagnetic modes with frequency f in
V . With Eq. (3.3) for the total number Mtot of modes in V for frequencies 0 . . . f and with the spectral

mode density %tot(f)V = dMtot/ df , the probability of a spontaneous emission, p
(e)
sp , in any mode of

frequency f is psp =
∫
p

(e)
sp dMtot.

Because of the finite lifetime the emission is not monochromatic but has a lineshape ρ(f) with a
half-maximum bandwidth ∆fH � f0 centred at f0. A detailed calculation leads to a Lorentzian,

ρ(f) =
2

π∆fH

1

1 +
(
f−f0
∆fH/2

)2 ,

+∞∫
−∞

ρ(f) df = 1 , 2π τsp∆fH = 1 . (3.33)

The probability of an induced emission into a certain electromagnetic mode is by NP larger than the
probability of a spontaneous emission (representing noise) into the same mode. The induced emission
of photons from a microsystem in state W2 happens with the same probability as absorption from the
ground state W1.

To achieve amplification the emission rate must be larger than the absorption rate, i. e., the number
N2 of microsystems in the excited state W2 must be larger than the number N1 of microsystems in the
ground state W1.

Purcell29 suggested more than half a century ago to tailor the spontaneous emission probability of
radiating dipoles into a specific mode of frequency f by using a cavity to modify the dipole-field coupling
and the density of available photon modes30,31.

28See App. I.1 Page 813 in Reference 18 on Page 60
29Purcell, E. M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69 (1946) 681
30Let a narrow-line cavity with a linewidth of ∆fH centred at a frequency f0 be described by the line shape function ρ(f)

of Eq. (3.33). Such a resonator with a quality factor QR = f0/∆fH = ω0 τP presents exactly one mode having a photon
lifetime τP , provided that the dipole radiation is spectrally narrower than ∆fH . The number of modes (= 1) per frequency
interval π∆fH/2 ≈ 1.6 × ∆fH is therefore 1/ (π∆fH/2) = 2/(π∆fH), which represents the equivalent density of cavity
modes. Compared with the density of free-space radiating modes %tot(f0)V in a volume V , the mode density is increased
by the so-called Purcell figure of merit31 FP ,

FP =
ρ(f0)

%tot(f0)V
=

2/(π∆fH)

8πV (f0n)2ng/c3
=

QR

4π2V n2ng(f0/c)3
, QR =

f0

∆fH
= ω0 τP . (3.34)

Enhancing the spontaneous emission probability (Purcell effect) of a solid-state emitter by making FP � 1 would allow
in particular the fabrication of high-efficiency light-emitting diodes, see Sect. 3.1.5. This can be achieved with high-QR
microcavities, and by exploiting the properties of photonic crystals.

31Gerard, J.-M.; Gayral, B.: Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities.
J. Lightwave Technol. 17 (1999) 2089–2095. — Here, the Purcell factor definition (see Ref. 29 on Page 68) is larger by 3
which stems from a 1/3 averaging factor accounting for the random polarization of free-space modes with respect to the
spontaneously radiating dipole. — Various expressions can be found in the literature for FP , which differ by a numerical
factor as large as ten. Therefore, care must be taken in comparing various experimental outcomes.
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Induced and spontaneous transitions

Conduction and valence band states of a semiconductor volume V under non-equilibrium conditions
are described by the respective Fermi functions fC(W ), fV (W ) Eq. (3.24), and by the density of states
ρC(W ), ρV (W ) Eq. (3.16). For the carrier concentrations nT and p we write Eq. (3.20), substituting f(W )
by fC(W ) and fV (W ), respectively. We are interested in a certain electromagnetic mode with photon
energy hf = W2 −W1. The total emission probability into this mode results from the product of the
probabilities for

• emission w(e),

• occupation of a CB state fC(W2), and

• for the event that the corresponding state in the VB is unoccupied, [1− fV (W1)].

Further, the number of states per energy, i. e., the density of states ρC(W2) and ρV (W1), have to be taken
into account, Eqs. (3.15), (3.16). Finally, we have to sum over all possible transitions.

The gain is determined by the difference in induced emission r
(eM)
ind and absorption rates r

(aM)
ind (unit

m−3 s−1), i. e., by the net number of photons r
(M)
ind emitted or absorbed per volume and time into a fixed

mode with frequency f . The spontaneous emission rate r
(eM)
sp into mode f does not depend on the photon

number. The quantum mechanical properties of the transition (e. g., the transition matrix element |µ21|2
specifying the interaction with the electromagnetic field, averaged over all possible spatial orientations
of the microsystem) are combined in a quantity K0 (unit W2 s). For a modulus-~kµ selection rule, i. e., a
kµ-selection rule32,33, we write (without giving a detailed derivation)

r
(M)
ind = r

(eM)
ind − r(aM)

ind

= 1
2NP V K0 ρC(W0) ρV (W0 − hf)

[
fC(W0)− fV (W0 − hf)

]
,

r
(eM)
sp = 1

2V K0 ρC(W0) ρV (W0 − hf) fC(W0)
[
1− fV (W0 − hf)

]
,

W0 = WC +
~2k2µ0
2mn

= WC +
hf−WG

1+mn/mp
for a kµ-selection rule.33

(3.35)

For photon energies exceeding the bandgap energy the DOS product34 is positive,

ρC(W0)ρV (W0 − hf) ∼
(
hf −WG

kT0

)
kT0 . (3.36)

The difference of the Fermi functions in Eq. (3.35) reads

fC(W0)− fV (W0 − hf) =
1

1 + exp
[(
WC +

hf−WG

1+mn/mp
−WFn

)/
kT
]

− 1

1 + exp
[(
WC − hf +

hf−WG

1+mn/mp
−WFp

)/
kT
] ,

fC(W0)− fV (W0 − hf) > 0 for

WC +
hf −WG

1 +mn/mp
−WFn < WC − hf +

hf −WG

1 +mn/mp
−WFp (3.37)

or hf < WFn −WFp .

32Adams, M. J.; Landsberg, P. T.: The theory of the injection laser. In: Gooch, C. H. (Ed.): Gallium arsenide lasers.
London: Wiley-Interscience 1969. Page 38

33On Page 59 the conservation of momentum ~kµ for a transition was discussed. The assumption of a ~kµ-selection rule
implies a reasonably pure semiconductor. For an injection laser the impurity concentration has an order of magnitude such
that impurity scattering will modify the momentum matrix elements involved in interband transitions, see Ref. 32. The
result of such scattering is to effectively relax the strict vectorial ~kµ-selection rule. Instead, we require the conservation of the

modulus |~kµC,V | = kµC,V , kµC = kµV = kµ0 of the crystal momentum (kµ-selection rule, not ~kµ-selection!). Therefore,
only the transitions at energies W2,1 = WC,V ± (~kµ0)2/ (2mn,p) in Fig. 3.6(b) are allowed, where W2 −W1 = hf holds.

34As a consequence of the relaxed kµ-selection rule, the DOS product is linear in frequency. For a strict ~kµ-selection rule

the stimulated r
(M)
ind and spontaneous emission rates r

(eM)
sp would vary according to

√
hf −WG, see Ref. 32 on Page 69.
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Optical amplification From Eqs. (3.35), (3.37) it follows that for an optical amplification, i. e., for

a net induced emission rate r
(M)
ind > 0 at T > 0, at least one quasi Fermi level must be inside the CB

or the VB, but (accepting a reduced gain) not necessarily both, see Fig. 3.13. However, at T = 0 (not
very practical, because the electrons and holes are trapped at the donor and acceptor levels, freeze-out35

range) both quasi Fermi levels need be inside the CB and the VB, respectively. The general inversion
condition for an amplification of an electromagnetic wave by a semiconductor reads (see Eq. (3.9))

WG < hf ≤WFn −WFp for T ≥ 0 and r
(M)
ind = r

(eM)
ind − r(aM)

ind ≥ 0 . (3.38)

This includes the transparency point where r
(M)
ind = r

(eM)
ind − r

(aM)
ind = 0. From the definition of r

(M)
ind

(Eq. (3.35)) and from the gain rate G being defined as the temporal increase of the photon number by
stimulated transitions, a relation may be established between both quantities,

r
(M)
ind =

1

V

dNP
dt

G =
1

NP

dNP
dt

 G =
r

(M)
ind

NP /V
. (3.39)

The spontaneous emission rate into the mode f and its net gain rate are connected by the inversion

factor nsp, which is determined by the ratio of the number N2 ∼ r(eM)
sp of excited microsystems to the net

number N2 −N1 ∼ r(eM)
ind − r(aM)

ind of emitting microsystems (total number N = N1 +N2),

r
(eM)
sp

r
(M)
ind /NP

=
r

(eM)
sp

G/V
=
fC(W0)[1− fV (W0 − hf)]

fC(W0)− fV (W0 − hf)
= nsp , (3.40)

nsp =
1

1− exp

(
hf − (WFn −WFp)

kT

) =
N2

N2 −N1
=

1

1−N1/N2
. (3.41)

Maximum gain G is reached for complete inversion nsp = 1, i. e., for N1 = 0 when all microsystems are
excited and the VB is empty, fV = 0. For practical operating points we have nsp = 1.5 . . . 2.5. If the
gain rate G is kept fixed for a certain device, the noise caused by the incoherent, spontaneous emission
of photons is in proportion to the inversion factor nsp. For low-noise optical amplification the inversion
factor should be as closely to 1 as possible.

Figure 3.14 displays the spontaneous and induced emission spectra Eqs. (3.35), (3.37) for fixed quasi
Fermi levels WFn −WC = 3kT0, WV −WFp = 0.5 kT0, (WFn −WFp)−WG = 3.5 kT0 and varying ratios
T/T0 (T0 is a fixed reference temperature). The carrier masses mn/mp = 0.14 are that of GaAs, Table 3.3.
The DOS product and the Fermi functions are

fC(W0) =
1

1 + exp
[ ( 1

1 +mn/mp︸ ︷︷ ︸
0.877

hf −WG

kT0︸ ︷︷ ︸
x

−
WFn −WC

kT0︸ ︷︷ ︸
3

)/ T

T0

] , (3.42)

fV (W0 − hf) =
1

1 + exp
[
−
( 1

1 +mp/mn︸ ︷︷ ︸
0.123

hf −WG

kT0︸ ︷︷ ︸
x

−
WV −WFp

kT0︸ ︷︷ ︸
0.5

)/ T

T0

] .

The photon energy is expressed by the normalized quantity x,

x =
hf −WG

kT0
, x0 =

(WFn −WFp)−WG

kT0
= 3.5 . (3.43)

The maximum spontaneous emission (see Fig. 3.14(a)) at T ≈ 0 is located at a normalized frequency

35See Ref. 19 on Page 60
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Fig. 3.14. Frequency dependence of spontaneous and induced emission for various temperatures T/T0 = 0.01, 0.1, 0.5, 1, 2
(T0 reference temperature; WFn−WC and WV −WFp are kept constant to 3 kT0 and 0.5 kT0, respectively; mn/mp = 0.14 as
in GaAs). Normalized frequency x = (hf −WG)/(kT0). (a) Spontaneous emission and (b) induced emission per photon,
Eq. (3.42). The multiplicative constant is identical in both diagrams.

x = x0, which corresponds to the difference of the quasi Fermi levels. It shifts for higher temperatures to
lower frequencies (down to x = 2.515 at T/T0 = 0.52 with the special assumptions of Eq. (3.42)). With
a further temperature increase T/T0 > 0.52 the maximum moves continuously to larger frequencies. The
spontaneous emission maximum for the reference temperature T = T0 is at xsp = 2.73.

The induced net emission rate per photon r
(M)
ind /NP = G/V and therefore the optical gain rate G

is positive only for 0 < x < x0. It is zero at x = x0 and becomes negative for x > x0 = 3.5 because
photons with energies hf > WFn−WFp are absorbed, Fig. 3.14(b). At T = 0 the spectra of spontaneous
emission and the gain rate are identical for x < 3.5 with an emission maximum at hf = WFn −WFp.
However, with increasing T the maximum gain shifts to lower frequencies. For a fixed temperature the
maximum gain is always at a lower frequency than the maximum spontaneous emission. At T/T0 = 1
the maximum emissions are at xsp = 2.73 and xind = 1.95, respectively. For GaAs at T0 = 293 K with a
gain maximum at λ = 0.842µm the difference xsp−xind = 0.78 at T/T0 = 1 corresponds to a wavelength
shift of ∆λ = 11.2 nm.

For the chosen model of a kµ-selection rule the spontaneous and stimulated emission spectra Fig. 3.14

exhibit a non-zero slope at x = 0 (this is also true for strict ~kµ-selection). For the kµ-selection rule36 the

ratio of the first derivatives d r
(eM)
sp / dx and d(r

(M)
ind /NP )/ dx amounts to nsp. Without k-selection these

slopes are zero, and the ratio of the second derivatives would be nsp.
Figure 3.15 displays a measured gain curve37 of an InAlGaAs/InP semiconductor laser. The zero-slope

at the bandgap wavelength λG = 1.65µm (see Table 3.2 on Page 57 for the InGaAsP/InP compound),

Fig. 3.15. Measured wavelength dependence of induced emission per photon for various carrier densities nT . The multi-
plicative constant is different from Fig. 3.14 (after Ref. 37 on Page 71).

36See Footnote 33 on Page 69
37Wüst, F.: Optischer Gewinn und Alpha-Faktor in InAlGaAs/InP Quantenfilmlasern. PhD Thesis Karlsruhe 1999. —

The material system offers a higher characteristic temperature T0, a larger differential gain dG/dnT and a smaller linewidth
enhancement factor α. This leads to a faster direct modulation capability than is possible for a InGaAsP/InP laser.
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and the shift of WFn −WFp to smaller emission wavelengths (larger frequencies) when increasing the
carrier concentration nT are clearly visible.

The ratio of the spontaneous emission rate r
(eM)
sp (f) into one mode of frequency f and the total

spontaneous emission rate rsp into all possible modes corresponds to the quotient of the probability
density ρ(f) ≤ 2/(π∆fH) that a microsystem with the required energy state is available, and the spectral
density of all possible electromagnetic modes %tot(f)V inside the active volume V . The corresponding

ratio for the induced emission rate r
(eM)
ind (f) into one mode of frequency f is larger by the photon number

NP (Eq. (3.35)),

r
(eM)
sp (f)

rsp

=
ρ(f)

%tot(f)V
,

r
(eM)
ind (f)

rsp

=
r

(eM)
ind (f)

r
(eM)
sp (f)

r
(eM)
sp (f)

rsp

=
NP
1

ρ(f)

%tot(f)V
. (3.44)

The left-hand side of Eq. (3.44) is an expression similar to Purcell’s figure of merit38 FP . However, in
Eq. (3.44) the relation ρ(f)� %tot(f)V holds normally, i. e., the emission linewidth “sees” a large number
of modes where to emit. If the quotient NP /1 of the induced and of the spontaneous emission rate into
a mode f is reduced by the same factor ρ(f)/ (%tot(f)V ), the ratio of the induced emission rate into the
mode f and the total emission probability into all modes results, right-hand side of Eq. (3.44).

By integrating the emission rate r
(eM)
sp (f) into one mode over all relevant modes the total spontaneous

emission rate rsp (unit cm−3 s−1) can be calculated (r
(eM)
sp ≥ 0 holds for f ≥WG/h only),

rsp ≡
∞∫
−∞

rsp ρ(f)︸ ︷︷ ︸
rsp(f)

df =

∞∫
−∞

r(eM)
sp (f) %tot(f)V df =

∞∫
WG/h

r(eM)
sp (f) %tot(f)V df . (3.45)

The left-most equation in the chain exploits the identity 1 ≡
∫∞
−∞ ρ(f) df , Eq. (3.33).

Radiative and nonradiative transitions For a radiative transition, both an electron and a hole
participate. Therefore it is plausible that the total spontaneous emission rate can be written as:

rsp = BnT p, B =

{
1× 10−10 . . . 7× 10−10 cm3 s−1 (Ga,Al)As
8.6× 10−11 cm3 s−1 (In,Ga)(As,P)

(3.46)

The smaller recombination coefficients B for (Ga,Al)As are valid for band-band transitions, the larger
ones for transitions from the CB into non-ionized well localized (small spatial uncertainty ∆x) shallow
acceptor states which can provide a large difference momentum ∆(~k) ≥ (~/2)/∆x. For (In,Ga)(As,P) the
temperature dependence is B ∼ 1/Tκ with 1 ≤ κ ≤ 1.5. In thermal equilibrium the carrier concentrations
Eq. (3.21) follow, i. e., rsp = Bn2

i . In the non-equilibrium case the spontaneous emission rate is rsp =
B(nT p − n2

i ), but because normally nT p � n2
i holds, Eq. (3.46) is a good approximation to the actual

case. Figure 3.16(a) shows schematically a radiative recombination. Figure 3.16(b) displays a nonradiative
recombination (rate rns, unit cm−3 s−1) via localized impurities in the forbidden band (rate r`S; such
impurities can help in shortening the lifetime, see the discussion in Sect. 3.1.1 on Page 53). Eventually,
Fig. 3.16(c),(d) presents Auger39 processes (rate: rAu), which are nonradiative. For (In,Ga)(As,P) the
process Fig. 3.16(d) is important, while in (Ga,Al)As Auger processes are of no consequence. In summary
we have:

rns = r`S + rAu
r`S = AnT
rAu = CnT p

2 (3.47)

Measurements in (In,Ga)(As,P) result in coefficients A = 1/(10 ns) (undoped samples) up to A =
1/(0.1 ns) (nA = 2 × 1018 cm−3), and in C = 4 × 10−29 cm6 s−1 (calculated: C = 10−27 . . . 10−31×
cm6 s−1). The Auger coefficient C increases with temperature; also A increases slightly. The structure

38See Eq. (3.34) in Footnote 30 on Page 68
39Pierre Victor Auger (pronounced [o"Ze], not ["O:g@(ô)]!) ?Paris (France) 14.5.1899, †Paris (France) 24.12.1993, French

physicist. He worked in the fields of atomic physics, nuclear physics, and cosmic ray physics.
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Fig. 3.16. Radiative and nonradiative transitions. (a) Radiative band-band transition. (b) Nonradiative transition via
localized states in the forbidden band. (c) (d) Nonradiative Auger recombinations (recombination energy excites an electron
in the CB or in the VB)

of r`S follows from the proportionality r`S ∼ nT because only one carrier type is involved. For Auger
recombination we have rAu ∼ nT p p because two carrier types recombine, and additionally a hole (case
of Fig. 3.16(d)) must be available to take over the excitation energy40. It is useful to define an effective
recombination rate

reff = rsp + rns = rsp + r`S + rAu . (3.48)

Inside the recombination zone of a diode (layer height d, cross-section area F ) the carrier density changes if
the injected carrier rate (injection current density J , elementary charge e) deviates from the recombination
rate,

dnT
dt

=
J

ed
− reff(nT ). (3.49)

Strictly speaking, reff(nT ) in Eq. (3.49) should be replaced by reff(nT )−reff(nT equil) for the correct solution
at a concentration nT equil for thermal equilibrium J = 0. With a step perturbation of the current density
from J0 to J0 +J1, a perturbation ansatz nT (t) = nT0 +nT1(t) together with a series expansion of reff =
reff 0 + (∂reff/∂nT )nT1 at nT0 results in

nT1(t) =
J1τeff

ed

(
1− e−t/τeff

)
, with τ−1

eff =
∂reff

∂nT
. (3.50)

In an analogous form the (carrier concentration dependent) lifetimes for the other recombination processes
may be defined. With Eqs. (3.46), (3.47) on calculates:

τ−1
sp =

∂rsp

∂nT
= B

(
p+ nT

∂p

∂nT

)
,

τ−1
`S =

∂r`S
∂nT

= A,

τ−1
Au =

∂rAu

∂nT
= C

(
p2 + 2nT p

∂p

∂nT

)
,


τ−1
eff = τ−1

sp + τ−1
ns ,

τ−1
ns = τ−1

`S + τ−1
Au .

(3.51)

The internal quantum efficiency ηint of radiative recombination is defined by

1

ηint
=
τsp
τeff

= 1 +
τsp
τns

= 1 + τsp

(
1

τ`S
+

1

τAu

)
. (3.52)

The smaller the effective lifetime τeff is, the faster the spontaneously emitted light can follow, see the
discussion in Sect. 3.1.1 on Page 53. However, if nonradiative processes determine the lifetime, the internal
quantum efficiency ηint deteriorates.

40For high electron injection p ≈ nT the recombination rate follows the law rAu ∼ n3
T , i. e., it increases faster than the

radiative emission rate Eq. (3.46). Therefore, (In,Ga)(As,P) lasers or LED must not be highly p-doped or operated at high
current densities.
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For moderate modulation frequencies, for which the modulation period is much smaller than τeff so that(
1− e−t/τeff

)
≈ 1 is a valid approximation, the generated radiation power amplitude P1 = (nT1Fd) hf/τsp

follows the instantaneous current amplitude I1, P1 ∼ nT1 ∼ J1F = I1. The quantity nT1Fd is the number
of spontaneously emitted photons,

P1 =
nT1Fdhf

τsp
=
J1(t)τeff

ed

hfFd

τsp
= ηinthf

I1
e
, ηint =

P1/(hf)

I1/e
. (3.53)

For high current densities the current dependence of τsp and ηint (see Eq. (3.51)) leads to nonlinear dis-
tortions. The internal quantum efficiency ηint represents the average number of photons per injected
electron.

3.1.5 Light-emitting diode

Output power and modulation properties Light-emitting diodes (LED) operate without end mir-

rors in a mode where the spontaneous emission rate r
(eM)
sp dominates, Eq. (3.35). For communication

purposes LED with double-heterostructures are common, Fig. 3.10. The generated light power P is given
by Eq. (3.53),

P =
nTFdhf

τsp
= ηinthf

I

e
, ηint =

τeff

τsp
=
P/(hf)

I/e
. (3.54)

The mean photon energy hf of the emission line is slightly larger than the bandgap energy WG. For a flat-
diode configuration the power reflection factor at the boundary assuming nearly perpendicular incidence

Fig. 3.17. Plane boundary between two media (n1, n2 > n1 refractive indices, ϑT critical angle of total reflection, RP
power reflection factor). Only the fraction (1−RP ) of the radiation from the solid angle ΩP is transmitted into the medium
n1.

is RP according to Eq. (3.1) on Page 50. The radiation is isotropically emitted into the full solid angle
4π, but only a fraction (1−RP ) ΩP /(4π) given by the critical solid angle ΩP for total internal reflection
(cone semi-angle π/2−ϑT ) is transmitted into the medium with lower refractive index n1 < n2, Fig. 3.17.
The optical efficiency ηopt describes the amount of usable light. The following numerical values apply for
the radiation from a semiconductor into air (or fused silica):

ηopt =
ΩP
4π

(1−RP ) = 1.5 % (3.5 %)


ΩP = 2π(1− sinϑT ) = 0.27 sr (0.54 sr),

cosϑT = n1/n2 = 73 ◦ (66 ◦),

RP =
(n1 − n2

n1 + n2

)2

= 32 % (18 %).

(3.55)

The radiated output power Pa of the LED is

Pa = ηoptP = ηexthf
I

e
, → ηext =

Pa/(hf)

I/e
= ηopt ηint. (3.56)
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The external quantum efficiency is denoted as ηext. The voltage drop U over the pn-junction when an
injection current I is flowing corresponds to the energetic distance of the quasi Fermi levels (Fig. 3.12),
which is in the order of the photon energy, eU = WFn −WFp ≈ hf , Eq. (3.9). With the electrical input
power Pel = UI a total power-conversion or wall-plug efficiency ηtot may be defined by

Pa = ηtotPel = ηexthf
I

e
→ ηtot = ηext

hf

eU
≈ ηext =

Pa/(hf)

Pel/(eU)
for Pel = UI . (3.57)

For direct semiconductors we have typically 0.5 ≤ ηint ≤ 0.9. The larger values are found with moderate
p-doping of the active layer, because then the electron number in the CB is reduced and inversion is more
simply to achieve, see Footnote 25 on Page 62. The total conversion efficiency for plane surface emitters
is in the order ηtot = ηopt ηint = 0.75 . . . 3.1 %. With operating currents up to 200 mA the emitted power
reaches the 10 mW range.

For larger injection currents I the optical power Pa tends to saturate and even to diminish. For
(In,Ga)(AsP) this would be true even at a constant junction temperature because of Auger recombination,
but actually the increased heat enforces this effect by a thermally reduced B, by an increase of C (not for
GaAs), and by the reduced carrier confinement in the double-heterostructure at elevated temperatures
(less pronounced in GaAs because of larger barriers than in (In,Ga)(AsP)). The temperature coefficient
cX = (1/X)(dX/ dT ) of the power amounts to cPa = −1.4×10−2 K−1 for GaAs and cPa = −2×10−2 K−1

for (In,Ga)(As,P).
A small signal (perturbation) ansatz g = g0 + g1(ω) ejωt for nT , J in Eq. (3.49) and for P, I, Pa in

Eq. (3.54), (3.56) together with the effective lifetime τeff Eq. (3.50) leads to the spectral relation

Pa1(ω) = ηexthf
I1(ω)

e

1

1 + jωτeff
. (3.58)

For a constant modulation current amplitude |I1(ω)| we find the current-power transfer function∣∣∣∣Pa1(ω)

Pa1(0)

∣∣∣∣ =
1√

1 + ω2τeff
2

→ ωc =
1

τeff
. (3.59)

The angular 3-dB cutoff frequency at |Pa1(ωc)/Pa1(0)| = 1/
√

2 is denoted as ωc. The photodetector
current is proportional to the received optical power, i1(ω) ∼ Pa1(ω). The angular frequency ωc corre-
sponds to the half-power point of the received signal power i21(ω) ∼ |Pa1(ω)|2 at the angular modulation
frequency ω. The signal amplitude increases with the efficiencies and thus decreases with the cutoff
frequency, Eqs. (3.58), (3.56), (3.52),

i1(ω) ∼ Pa1(0) ∼ ηext ∼ ηint ∼ τeff ∼
1

ωc
. (3.60)

For a given material the cutoff angular frequency ωc may be increased only by forcing nonradiative
recombination at the cost of efficiency. For high-speed LED fc = 1 GHz is possible. A further decrease
of τeff is counterproductive because eventually the LED junction capacitance C in combination with the
source resistance R fixes the time constant τ = RC.

LED spectrum

The detailed distribution of the carriers into states of the CB and VB depends on the Fermi level, i. e.,
on the impurities in the active layer and on the injection current. With increasing temperature the Fermi
function changes, and the spontaneous emission maximum shifts first to lower, then to higher frequencies,
Fig. 3.14 on Page 71. The bandgap energy decreases with increasing temperature. Both effects together
result in a shift of the emission maximum to lower frequencies (larger wavelengths) by a rate of 0.2 nm K−1

for GaAs and 0.4 nm K−1 for (In,Ga)(As,P) near λ = 1.3µm.
Figure 3.6(a) on Page 59 shows the bandstructure of a direct semiconductor. The spectral width

of the emission is determined mainly by the energetic distribution of the carriers in the bands. The
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occupation probabilities are determined by the Fermi function, Fig. 3.7 on Page 61. The quasi Fermi
levels f(WFn,p) = 1/2 are usually near the band edge, WFn,p ≈ WC,V . The Fermi function changes
significantly from f(WFn,p − 2kT0) = 0.88 to f(WFn,p + 2kT0) = 0.12 in an energetic interval 4kT0

around the Fermi energy. For both GaAs and InP, the curvatures of the CB and VB in Fig. 3.6(b)
on Page 59, i. e., the reciprocal effective carrier masses in Eq. (3.13) and in Table 3.3 on Page 60, are
significantly different, mn � mp. Compared to the CB, the VB is virtually flat. Therefore, photons are
emitted in the spectral range WG ≤ hf ≤ (WC + 2kT0)−WV . The total spectral width of the emission
essentially amounts to h∆fH = 2kT0,

h∆fH = 2 kT0 = 50 meV, ∆fH = 12.1 THz at room temperature T0 = 293 K . (3.61)

For GaAs we have ∆λH = 30 nm, for (In,Ga)(As,P) ∆λH = 70 nm at λ = 1.3µm. The quantity ∆fgain is
also an estimate for the amplification bandwidth of semiconductor laser devices. Basically, it corresponds
to the width ∆fH of the lineshape ρ(f), Eq. (3.33) on Page 68.

Devices

The surface emitter (LED) and the edge emitter (ELED) are the two basic device configurations to couple
the LED light output into a small-diameter glass fibre.

Surface emitter For the surface emitter Fig. 3.18 the emitting area of the junction is confined by
oxide isolation, and the contact is usually 15 . . . 100µm in diameter. The active p-GaAs layer is part of
a 3-layer heterostructure. The device is known as a Burrus diode41. The n-GaAs substrate is thinned

Fig. 3.18. Small-area high-radiance (Ga,Al)As double-heterostructure surface-emitting LED with attached fibre (Burrus
diode). Epoxydharz = epoxy resin, Anschlußdraht = bond wire, Metallkontakt = metal contact, Metallisierung = metal-
lization

by etching to reduce the absorption. This is not required in an (In,Ga)(As,P) system because the InP
substrate is transparent having a wider bandgap than the active (In,Ga)(As,P) layer. The smaller the
junction area F is, the better the heat can be removed, the higher the current density can be chosen, and
the brighter the emitted light will be. Depending on the angle γ measured from an axis perpendicular to
the emitting surface, the apparent radiating area changes according to F cos γ. The radiance L is defined
as the differential power dP radiated from a differential apparent area dF cos γ into a differential solid
angle dΩ centred at an angle γ,

L =
d2 P

dF cos γ dΩ
,

dP

dΩ
= dF cos γ . (3.62)

41Burrus, C. A.; Miller, B. I.: Small-area DH Al-Ga-As electroluminescent diode sources for optical fiber transmission
lines. Opt. Commun. 4 (1971) 307–309
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An emitter with a constant radiance L and a cos γ-dependent far-field power distribution P is called a
Lambertian source. Its half-power width is ∆γH = 120 ◦. Because of the large emission angle, LED light
may be coupled efficiently only to multimode waveguides.

Fig. 3.19. Edge-emitting double-heterostructure LED. L, b, d are length, width and thickness of the active zone. Metal-
lkontakt = metal contact, metallischer Streifenkontakt = metallic contact strip, Wärmesenke = heat sink, Brechzahl =
refractive index

Edge emitter The edge emitter is shown in Fig. 3.19. The active layer is very thin, d = 0.05 . . . 0.1µm.
Together with the adjacent layers of reduced refractive index this 5-layer double-heterostructure forms
a vertically single-moded strip waveguide. The lateral width of b = 10 . . . 50µm is effectively defined by
the carrier injection from the contact stripe. Because of the vertical waveguiding the far-field half-power
width in vacuum is less than 120 ◦, typically ∆γH = 0.52 =̂ 30 ◦. For a single-mode slab waveguide
with a normalized frequency V = (d/2)k0AN and V ≤ V1G = π/2, a vacuum far-field angle γN ≈
sin γN = AN = (V1G/π)(λ/d) = 1

2λ/d would be expected. With ∆γH = 2γN ≈ λ/deff and λ = 1.3µm
an associated effective vertical field extension deff would be in the order of the vacuum wavelength,
deff = λ/∆γH = 2.5µm. This is larger than the actual significant field extension in the waveguide
xM = 1.8 d = 0.18µm for h =̂ d = 0.1µm. While immediately at the semiconductor-vacuum interface the
transverse field extension is xM , a few wavelength away from the interface into the vacuum the effective
field extension is of the order of λ, because of diffraction.

Laterally the ELED behaves as a Lambertian source. The device radiates perpendicular to the main
current flow direction through the cleaved end faces. To increase the efficiency, one endface may be coated
to yield a very high reflection factor, while the other end face may be antireflection-coated. Typical device
lengths are L = 100µm.

The narrow contact stripe allows high current densities. Therefore, and because of the spatially coher-
ent field in the vertical waveguide, the radiance of edge-emitters is larger (up to L = 1 000 W cm−2 sr−1)
than for surface emitters, and a more efficient power coupling into single-mode fibres becomes possible.

Superluminescent diode With higher current densities and larger lengths up to about L = 500µm
induced amplification of the spontaneously emitted light can become important. Such a device is called
a superluminescent LED (SLED). Because the effective carrier lifetime τeff is reduced by stimulated
emission, Eq. (3.5), the maximum modulation frequency fc = 1/(2πτeff) increases without paying an
output power penalty, Eqs. (3.59), (3.60). Simultaneously, the emission linewidth becomes smaller because
of the frequency-selective amplification, i. e., the temporal coherence becomes larger. The SLED light may
be coupled to external waveguides as well as it this the case for an ELED.



78 CHAPTER 3. OPTICAL TRANSMITTERS

3.1.6 Laser diode

Basic relations

A basic laser diode (LD) that has a rectangular cavity is equivalent to a Fabry-Perot (FP) resonator, Fig.
3.1 on Page 50 and Fig. 3.5 on Page 58, and is thus called a Fabry-Perot laser diode (FP LD). The structure
is similar to the one of the edge-emitter Fig. 3.19 having a laser-active volume V = dbL with dimensions
d = 0.1 . . . 0.2µm (vertical, x-direction), b = 2 . . . 5µm (lateral, y-direction) and L = 300 . . . 1 200µm,
(longitudinal, z-direction).

Waveguiding properties and resonances The transverse waveguiding mechanism is described by
an effective refractive index ne < n (Eq. (2.13) on Page 18) which is smaller than n in Fig. 3.1. To
avoid complicated subscripts we drop the index e for convenience, and implicitly regard the propagation
quantities as effective waveguide quantities. This applies, e. g., to the (complex) propagation constant, to
the modal loss αV in Eq. (3.75), and to the longitudinal mode spacing ∆fz.

For plane waves propagating along the z-axis (kx,y = 0, kz = k) the longitudinal resonances are given
as in Eq. (3.2) and the foregoing text on Page 50 by

k × 2L = k0n× 2L = ωn× 2L/c = mz × 2π , mz = 1, 2, 3, . . . (3.63)

Regarding mz for the moment as a continuous variable, we differentiate fn = mzc/(2L) with respect to
mz resulting in

d(fn)

dmz
=

df

dmz
n+ f

dn

df

df

dmz
=

df

dmz

(
n+ f

dn

df

)
=

c

2L
, ng = n+ f

dn

df
. (3.64)

Recalling the discrete nature of mz, the replacements dmz → 1 and df → ∆fz are appropriate. Intro-
ducing the group index ng, the group velocity vg (Eq. (2.15) on Page 19) and the photon round-trip time
τU (Eq. (3.4) on Page 51), this leads to the equidistant longitudinal mode spacing (free spectral range
FSR, see also Eq. (3.3) on Page 51),

∆fz =
c

2ngL
=
vg
2L

=
1

τU
. (3.65)

The typical comb structure of the spectrum is displayed in Fig. 3.24 on Page 91.

Field confinement factor The field energy is not concentrated in the active volume V alone, because
the transversely evanescent field extends into the cladding of the waveguide Fig. 3.1. The extent of the
field concentration is given by the field confinement factor Γ of the fundamental TE mode ( ~E parallel
to y-axis),

ΓTE =

∫ +d/2

−d/2
|Ey(x)|2 dx

/∫ +∞

−∞
|Ey(x)|2 dx . (3.66)

An approximation valid for all V (for the fibre V -parameter, see Eq. (2.13) on Page 18) with a maximum
error of 1.5 % is42

ΓTE =
2V 2

1 + 2V 2
, V =

d

2
k0

√
n2

1 − n2
2. (3.67)

The field confinement Γ for the TE mode is slightly larger than the one for the TM mode ( ~H parallel
to y-axis), ΓTE > ΓTM. An example for a laser is ΓTE = 0.184 and ΓTM = 0.145, for a laser amplifier it
is ΓTE = 0.3 and ΓTM = 0.25. For d = 0.1 . . . 0.2µm the values Γ = 0.2 . . . 0.6 are typical. This and the
larger endface reflection factor for TE polarization is the reason why diode lasers usually oscillate in TE
polarization.

42Botez, D.: Analytical approximation of the radiation confinement factor for the TE0 mode of a double heterojunction
laser. IEEE J. Quantum Electron. QE-14 (1978) 230–232
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Emission and absorption rates With respect to Γ , the equations for induced and spontaneous
emission as well as the total mode number and density Mtot and %tot have to be modified. The oscillating
laser mode having a photon number NP fills effectively a volume V/Γ which is larger than the active
volume V . This increases the total mode number Mtot and mode density %tot, because the active volume
V (not to be mixed up with the normalized frequency parameter V in Eq. (3.67)) has to be replaced by
the effective mode volume V/Γ . The number of photons interacting with the active medium is reduced
to ΓNP , and the equivalent energy density for spontaneous and induced transitions ((NP + 1)hf /V (see
Eq. (3.32), (3.35)) should be replaced by Γ (NP + 1)hf /V . The transverse waveguiding mechanism is
described by an effective refractive index ne < n (Eq. (2.13) on Page 18) which is smaller than n in Fig.
3.1. In summary, we have to substitute in Eqs. (3.39), (3.40)

r
(M)
ind −→ r

(M)
ind e = Γr

(M)
ind , Mtot −→ Mtot e = Mtot/Γ ,

r
(eM)
sp −→ r

(eM)
sp e = Γr

(eM)
sp , %tot −→ %tot e = %tot/Γ .

(3.68)

The inversion factor nsp Eq. (3.41) remains unchanged because of Eq. (3.40). The same is true for the
total spontaneous emission rate rsp Eq. (3.45), and as a consequence also for the effective recombination
rate reff = rsp + rns = rsp + r`S + rAu Eq. (3.48),

nsp −→ nsp e = nsp , rsp −→ rsp e = rsp ,

reff −→ reff e = reff .
(3.69)

Gain and loss Actually, the resonator is longitudinally multimoded, Eq. (3.65). We describe the modes
by plane waves with effective propagation properties and a complex (effective) refractive index n̄ = n−jni
with real part n and imaginary part −ni (dropping the subscript e as discussed on Page 78),

exp(− j k̄z),

 k̄ = k0n̄ = k + 1
2 j (g − αV ),

n̄ = n− jni,
k0 = ω/c,

 , g − αV = −2 k0ni. (3.70)

The quantities g, αV are the modal power gain and loss constants corresponding to the net effective
gain rate ΓG due to band-band transitions, and a power loss time constant 1/τV to be discussed in the
following which does not include band-band transitions.

According to Eq. (3.70) the wave experiences a net power gain of exp [(g − αV )2L] for a round-trip of
length L between the resonator mirrors with power reflection coefficients R1,2. Because of the mixture of
length-distributed gain and localized mirror losses one is usually not interested in keeping track of how
many times the light goes back and forth for amplification. Instead of using the gain per length it is then
a more practical approach to define an equivalent gain per time.

At each partially transparent mirror the localized losses are equivalently described by a power “gain”
R1R2 = exp (−αR12L) exp (−αR22L) = exp (−αR2L) distributed over a round-trip through the res-
onator. The gain rate G (see Eq. (3.39) on Page 70) specifies the number of photons generated per second.
The total losses of photons per second 1/τP are described by the photon lifetime τP . The round-trip time
τU = 2L/vg for a photon can be computed from its group velocity vg (see Eq. (2.15) on Page 19). Assum-
ing a constant gain rate per round-trip time τU , the net increase in photon number per time including
all losses is

G− 1

τP
=

1

NP

dNP

dt
,

NP (τU )

NP (0)
= exp

[(
G− 1

τP

)
τU

]
, τU =

2L

vg
. (3.71)

Taking into regard the loss mechanisms discussed above, the following relations hold between the gain
rate Eq. (3.71) and the modal power gain Eq. (3.70),

exp
[
(G− 1/τP )τU

]
= exp

[
(G− 1/τV − 1/τR)τU

]
(3.72)

= R1R2 exp
[
(G− 1/τV )τU

]
=R1R2 exp

[
(G− 1/τV )2L/vg

]
= R1R2 exp

[
(g − αV )2L

]
= exp

[
(g − αV − αR)2L

]
= exp

[
(g − αV − αR1 − αR2)2L

]
.
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Comparing the various forms in Eq. (3.72) we find

G = vgg,

1/τV = vgαV ,

1/τR1,2 = vgαR1,2 = −vg lnR1,2/(2L),

1/τR = vgαR = −vg ln(R1R2)/(2L),

1/τP = vg(αV + αR) = vg[αV − ln(R1R2)/(2L)].

(3.73)

With the same reasoning as above, the net material gain rate G = vgg must be replaced by the net modal
gain rate ΓG = vgΓg,.

G −→ Ge = ΓG , g −→ ge = Γg . (3.74)

The resonant mode is attenuated mainly in the active zone (a background material power loss constant
αV not including band-band transitions) and by the adjacent heterolayers (power loss constant αhet).
Additionally, interface scattering and substrate losses could have some influence (power loss constant
αadd). So the material loss has to be replaced by the modal loss,

αV −→ αV e = ΓαV + (1− Γ )αhet + αadd . (3.75)

Gain model The (effective) modal loss constant Eq. (3.75) (αV ≈ αhet, αadd = 0, αV e ≈ αV ) is
typically in the order of αV = 20 . . . 50 cm−1. The necessary threshold gain constant Γg = αV + αR is
in the region Γg = 25 . . . 90 cm−1. For GaAs and at the spectral gain maximum (see Fig. 3.14(b)) the
approximate nT -dependency is

g = g0 × (nT /nt − 1), g0 = 330 cm−1, nt = 1.1× 1018 cm−3 . (3.76)

The carrier concentration for a zero net gain constant g = 0 is called the transparency carrier concen-
tration nt. A typical threshold carrier density amounts to nTS = 1.2 × 1018 . . . 1.4 × 1018 cm−3. The
refractive index of the active layer is about n = 3.5, Table 3.2, the group refractive index is in the region
ng = 3.75 . . . 5.

The laser oscillates near the frequency f0 of the maximum spectral gain. However, a larger injected
carrier number leads to a nonlinear gain compression, because the energy states near the laser resonance
energy hf0 deplete due to hot carrier effects and spectral hole burning43. To fill the depleted states it
needs the intraband relaxation time τCB (Page 63), and this represents a “bottleneck” for the number
of carriers available in energy states near hf0. Phenomenologically, the nonlinear gain compression is
modeled by a photon-number dependent decrease of the gain described by a gain compression factor εG.
With the differential gain Gd and the transparency concentration nt the optical gain is

G(nT , NP ) =
G(nT )

1 + εG
ΓNP
V

= Gd
nT − nt

1 + εG
ΓNP
V

. (3.77)

43Schuster, S.; Haug, H.: Calculation of the gain saturation in cw semiconductor lasers with Boltzmann kinetics for
Coulomb and LO phonon scattering. Semicond. Sci. Technol. 10 (1995) 281–289

”
Spectral hole burning means the formation of a dip in the carrier distribution function around the laser resonance due

to the finite intraband scattering time.
The stimulated emission heats the CB carriers by removing cool particles [between the bandedge and the quasi Fermi

energy WFn], because the energy of the recombining electron-hole pairs is smaller than the average pair energy which is
roughly the difference of the quasi Fermi energies WFn −WFp.

The phenomenological gain saturation coefficient εG stems from the finite intraband scattering time which yields an
increase of the CB carrier density with increasing pump current. An injected hot electron-hole pair needs a finite time for
the scattering into the laser resonance [energy hf ] where stimulated recombination may occur. Therefore a higher pump
current does not only result in a higher light intensity but also in a more pronounced non-equilibrium carrier distribution
function with particle depletion around resonance (spectral hole burning), an increasing average carrier energy (carrier
heating) and a growing density due to this kinetic ‘bottleneck’.

For smaller pump rates the gain saturation calculated within the microscopic model [treating the carrier distributions in
terms of the Boltzmann collision integral] decreases, which indicates that in this regime the kinetic limitation of the pump
efficiency due to the carrier scattering into the laser resonance is not yet fully established.“
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The gain compression factor is in the order of εG = 2.5 × 10−17 . . . 3.1 × 10−17 cm3. In the case of an
empty VB (very high and constant hole concentration p = nA, i. e., fV ≈ 0 in the range of interest and
complete inversion nsp = 1), the transparency concentration becomes zero, nt = 0, because the slightest
electron concentration in the CB already establishes some gain. This can be also seen from Eq. (3.35),
(3.37). If we further neglect gain compression, εG = 0, a linear gain dependency follows,

G(nT ) = Gd nT . (3.78)

Rate equations

The operating characteristics of a semiconductor laser are well described by a set of rate equations that
govern the interaction of photons and electrons inside the active region. A rigorous derivation starts from
Maxwell’s equations and includes in a semi-classical approach the quantum mechanical calculation of
light-matter interaction. If spontaneous emission is to be included rigorously, quantum electrodynamics
becomes involved where the optical field is quantized, too.

The rate equation can also be written heuristically by considering the phenomena through which the
number NP of photons and electrons nTV change with time inside the active volume V . We assume
that the valence band is practically emptied of electrons. This is true if — as with GaAs and InP —
the curvature of both the CB and VB, i. e., the reciprocal effective carrier masses in Eq. (3.13) and the
effective DOS NC,V in Table 3.3 on Page 60, are significantly different, mn � mp and NC � NV ,
see the discussion of Eq. (3.61) on Page 76. Therefore the hole concentration in the VB is large and
virtually invariant, ∂p/∂nT ≈ 0, so that τ−1

sp = ∂rsp/∂nT ≈ Bp in Eq. (3.51) holds, and the spontaneous
recombination rate rsp = BnT p of Eq. (3.46) may be approximated by rsp ≈ nT /τsp. An equivalent
procedure approximates the effective recombination rate reff from Eq. (3.48) by reff ≈ nT /τeff. The
result is

rsp = BnT p ≈ nT /τsp ,

reff = rsp + r`S + rAu ≈ nT /τeff

if NC � NV and therefore

τ−1
sp = ∂rsp/∂nT ≈ Bp ,

τ−1
`S = ∂r`S/∂nT = A ,

τ−1
Au = ∂rAu/∂nT ≈ Cp2,

τ−1
eff = τ−1

sp + τ−1
`S + τ−1

Au .

(3.79)

The lifetimes τsp and τeff depend on electron and hole concentrations, if the hole concentration p changes
noticeably with the electron concentration nT . For a longitudinally and laterally single-moded laser, the
rate equations take the form44

dNP
dt︸ ︷︷ ︸

change of photon
number per time

= + NPΓG(nT , NP )︸ ︷︷ ︸
stimulatedly generated

photons per time

+ Q
nTV

τeff︸ ︷︷ ︸
spontaneously generated

photons per mode and time

− NP
τP

,︸ ︷︷ ︸
stimulatedly depleted

photons per time

d(nTV )

dt︸ ︷︷ ︸
change of electron
number per time

= − NPΓG(nT , NP )︸ ︷︷ ︸
stimulatedly depleted

electrons per time

− nTV

τeff︸ ︷︷ ︸
spontaneoulsy depleted

electrons per time

+
I

e
.︸︷︷︸

injected electrons
per time

(3.80)

The first equation (3.80) means in words: The number of photons NP increases through photons which are
generated by stimulated emissions with a net gain rate ΓG, and it increases through photons generated
by spontaneous recombinations of electrons at a rate 1/τeff, where only a fraction Q leads to spontaneous
emissions into the mode under consideration. Further, the photon number decreases with a rate 1/τP
determined by the photon lifetime τP from Eq. (3.73).

The second equation (3.80) has to be read as follows: The number of electrons nTV in the active
volume V decreases through electrons which recombine when stimulated by photons existing in the mode

44See Sect. 3.5.4 Eq. (3.116) on Page 183 in reference Footnote 47 on Page 89
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under consideration, therefore a stimulated increase of the photon number corresponds to an equivalent
decrease of the electron count. The number of carriers is further depleted with a rate 1/τeff determined by
the effective electron lifetime τeff, which takes into regard radiative (τsp) and nonradiative recombinations
(τ−1
`S , τ−1

Au ) according to Eq. (3.51). Finally, the charge carrier number increases at a rate I/e fixed by the
injection current I.

Because of stimulated (NPΓG) and spontaneous recombinations (QnTV/τeff) the rate equations for
the photon number NP and for the CB carrier number nTV are nonlinear and coupled.

Electrons deplete spontaneously at a rate 1/τeff. The spontaneous emission factor Q tells how many
spontaneous recombinations actually lead to photons being emitted into the mode under consideration.
Taking into account the field confinement factor Γ from Eq. (3.66), (3.67), and looking at the translation

relations Eq. (3.68), (3.69), the ratio of the spontaneous radiative recombination rate Γr
(eM)
sp into one

mode and the effective recombination rate reff defines Q. Using Eq. (3.44), (3.79) one finds45

Q =
Γr

(eM)
sp

reff
=

Γrsp

reff

ρ(f)

%tot(f)V
= Γ

τeff

τsp

ρ(f)

%tot(f)V
. (3.81)

Lasing threshold Neglecting spontaneous emission (Q = 0) and assuming NPG� nTV/τeff we define
the lasing threshold (German Schwelle, subscript S) using Eq. (3.80) for the case d / dt = 0 with τP from
Eq. (3.73); above threshold the device starts oscillating as described in on Page 53,

ΓG(nTS , 0) = ΓGS =
1

τP
= vg

[
αV −

ln(R1R2)

2L

]
,

IS
e

=
nTSV

τeff
= reffV. (3.82)

It is for the threshold carrier concentration nT = nTS that the net gain rate ΓGS just compensates
the loss rate, represented by the reciprocal photon lifetime 1/τP of Eq. (3.73). Obviously, ΓGS is larger
than the net gain rate G(nT , NP ) = G(nt, NP ) = 0 where the material becomes transparent. Only
above threshold the number of photons generated per time becomes larger than the number of photons
annihilated. Excluding other loss mechanisms, the maximum photon lifetime τP is determined by the
minimum mirror transmission losses for the given configuration. For Q 6= 0 the photon number NP
becomes already significant for ΓG < ΓGS = 1/τP , so that for d / dt = 0 the gain rate ΓG is always
smaller than the idealized threshold gain ΓGS as defined in Eq. (3.82). From Eq. (3.80) we see that

NP =
(Q/τeff)nTV

1/τP − ΓG
=

Γr
(eM)
sp V

1/τP − ΓG
=

r
(eM)
sp V

GS −G
. (3.83)

Threshold current The threshold current density JS = IS/(bL) for the 5-layer structure Fig. 3.10(b)
becomes minimum for a certain height d of the active layer, because the field confinement factor depends
on d, Γ = Γ (d). If d is small, only a small portion of the field interacts with the amplifying medium
and the carrier concentration must be high. If d is large, the field is well confined inside the active layer,
but only the region with the maximum field strength interacts efficiently with the population-inverted
semiconductor, and again the carrier concentration must be high.

With Eq. (3.82) and g from Eq. (3.76), (3.77) we calculate the threshold current by eliminating nTS ,

JS =
IS
bL

=
ent
τeff

[
d+

ΓαV + αR
g0

d

Γ (d)

]
. (3.84)

45Usually, the spontaneous emission factor is very small, Q = 10−5 . . . 10−4. This is true if the wave is guided by a
difference of the real part of the refractive index (index guided laser, Fig. 3.5 on Page 58 and Fig. 3.25(b) on Page 92).
However, if the waveguiding is dominated by the gain mechanism itself (gain guided laser, Fig. 3.25(a) on Page 92), the
Q-factor is increased to Qe = KeQ, Ke = 10 . . . 20. More details on these structures are given in Sect. 45 on Page 91 (see
also Sect. 3.6.2 Page 191 in Ref. 47 on Page 89).



3.1. LIGHT SOURCES 83

From the approximation Γ (d) ≈ 2V 2/(1 + 2V 2) in Eq. (3.67) and V ∼ d we see that Γ ∼ d2 for d small
(2V 2 � 1), and Γ → 1 for d, V large. Equation (3.84) has the structure (c1,2 = constd)

JS = c1d +
c2
d

for d < dc =
√

10
λ√
2 π

/√
n2 − n2

2 = 0.71× λ
/√

n2 − n2
2 , (3.85)

so a minimum JS is obvious. The term c1d = (ent/τeff)d is the transparency current density for dis-
appearing losses c2/d. For a specific parameter set of a GaAs-(Ga,Al)As laser (g0, nt from Eq. (3.76),
τeff = 1 ns, αV +αR = 50 cm−1, λ = 0.87µm, n = 3.59, n2 = 3.45, dc = 0.62µm) the minimum threshold
current density is JS = 2.88 kA cm−2 for an optimum layer thickness of d = 0.07µm. With L = 300µm,
b = 5µm the threshold current is IS = 43 mA.

The threshold current depends on temperature. The dependence on a temperature increase ∆T is
well described by the empirical function

IS(∆T ) = IS(0) e∆T/T0 ,
1

T0
=

1

IS(0)

dIS(∆T )

d∆T

∣∣∣∣
∆T = 0

= αIS . (3.86)

The characteristic temperature T0 has to be found from measurements. The temperature dependence
comes from the strongly temperature-dependent distribution of carriers in the CB and VB, see Fig.

3.14(b). It is seen that with increasing T the net gain r
(M)
ind /NP decreases. Further, the carrier confinement

by the potential walls of the heterostructure becomes worse with increasing T . Because these walls are
lower for the (In,Ga)(As,P) system, and because Auger recombinations become increasingly important
with rising temperature, the temperature coefficient αIS for InP is larger than for GaAs (InP: T0 =
40 . . . 80 K. GaAs: T0 = 120 . . . 230 K). Therefore the characteristic Pa = Pa(I) Eq. (3.96) shifts with the
temperature-dependent threshold.

Normalized rate equations The rate equations Eq. (3.80) can be normalized with the help of Eq. (3.82),

τP
d

dt

(NP /τP
IS/e

)
=
NP /τP
IS/e

[ΓG(nT , NP )

1/τP
− 1
]

+Q
nTV

nTSV
,

τeff(nTS)
d

dt

( nTV
nTSV

)
=

I/e

IS/e
− nTV

nTSV
− NP /τP

IS/e

ΓG(nT , NP )

ΓGS
.

(3.87)

We define normalized quantities for the photon and carrier number, for the pump current and for the
gain rate,

N×P =
NP /τP
IS/e

, N×T (nT ) =
nT
nTS

, N×t =
nt
nTS

, ε×G =
Γ

V

IS
e
τP εG ,

I× =
I

IS
, G×(N×T , N

×
P ) =

ΓG(nT , NP )

1/τP
=
N×T −N

×
t

1−N×t
1

1 + ε×GN
×
P

. (3.88)

With the spontaneous emission factor Eq. (3.81), the normalized rate equations are written as

τP
dN×P

dt
= N×P (G× − 1) +QN×T ,

τeff
dN×T

dt
= I× −N×T −N

×
P G
×.

(3.89)

Characteristic curves For d / dt = 0 the rate equations (3.89) may be easily solved if spontaneous
emission and gain compression is neglected, Q = 0 and ε×G = 0. Below and at threshold I× ≤ 1 the
photon number is zero, NP = 0, and the first line of Eq. (3.89) is fulfilled for any G×. The carrier number
increases with the current, N×T = I×. Above threshold for N×P > 0 the normalized gain is clamped to
G× = 1, and so is the carrier number, N×T = 1, as may be seen from Eq. (3.88). Therefore the photon



84 CHAPTER 3. OPTICAL TRANSMITTERS

number increases according to N×P = I× − 1. The clamped carrier density has the consequence that any
residual dependency of τsp, τeff and Q on the carrier concentration becomes essentially unimportant. In
summary we have

I× ≤ 1: N×T = I×, N×P = 0 , Q = 0 ,

I× > 1: N×T = 1 , N×P = I× − 1 , G× = 1 ,
(3.90)

The normalized light output and the CB carrier density versus the normalized injection current, N×P =
f(I×) and N×T = g(I×) are displayed in Fig. 3.20. If spontaneous emission into the lasing mode is
important, Q 6= 0, the straight lines are “softened”. This is to be seen in Fig. 3.20 where a simplified gain
dependence G× = N×T according to Eq. (3.78) was assumed.

Fig. 3.20. Normalized photon number N×P and normalized CB carrier density N×T as a function of the normalized injection

current I×. For Q 6= 0 a simplified gain dependence G× = N×T according to Eq. (3.78) is assumed.

Powers and Efficiencies

The totally generated and the total output power, respectively, are denoted as P and Pa. They are given
by the total photon energy NPhf in the resonator volume per lifetime τP,R of the photons with respect
to total losses (τP ) or mirror transmittivity (τR),46

P =
NPhf

τP
, Pa =

NPhf

τR
. (3.91)

Analogous to Eqs. (3.54), (3.56) one defines an internal and an external quantum efficiency for the laser
diode by

ηLD
int =

P/(hf)

I/e
, ηLD

ext =
Pa/(hf)

I/e
, (3.92)

From these relations and with Eq. (3.73) we write

ηLD
ext

ηLD
int

=
τP
τR

=
1

1− 2αV L

ln (R1R2)

. (3.93)

Through the slope of the characteristic curve Pa = Pa(I) above threshold one defines a differential
quantum efficiency

ηd = d

(
Pa
hf

)/
d

(
I

e

)
. (3.94)

46If an electric heater consumes an energy of 2 kW h within a time of 1 h, then the power consumption of the device is
obviously P = 2 kW h /1 h = 2 kW. The same is true for the laser resonator: We know the energy NP hf stored inside,
and we know the time τR after which this energy has been lost through the mirrors (disregarding other loss mechnisms).
Therefore, the power output from both mirrors is Pa = NP hf/τR, Eq. (3.91).
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For an ideal laser diode with Q = 0, ε×G = 0 and with the solution N×P = I× − 1 Eq. (3.90) we find

P =
hf

e
(I − IS),

Pa =
hf

e

τP

τR
(I − IS),

 ηd =
τP
τR

=
ηLD

ext

ηLD
int

. (3.95)

For an actual laser one approximates the stimulated total power and the output power dependence,
respectively, by

P = ηind
hf

e
(I − IS), Pa = ηind

hf

e

τP
τR

(I − IS). (3.96)

The quantity ηind is the efficiency for induced emission, indicating which percentage of the totally gen-
erated photons originated from stimulated emission acts. Because spontaneous emission goes into each
of the resonator modes contained inside the linewidth ∆fH of the lineshape ρ(f) Eq. (3.33), ηind is of
the order NP /(NP + %tot(f)V ∆fH), where %tot(f)V ∆fH is the number of relevant laser modes.From
Eq. (3.96) the following interrelations may be derived,

ηd = ηind
τP
τR

=
ηind

1− 2αV L

ln(R1R2)

= ηind
ηLD

ext

ηLD
int

. (3.97)

By measuring the differential laser quantum efficiency with R1 = R2 = R for varying resonator lengths
L, the differential quantum efficiency ηd may be extrapolated for L = 0 and the efficiency ηind Eq. (3.96)
for induced emission may be determined. Typical differential efficiencies are in the range ηd = 0.5 . . . 0.8,
efficiencies for induced emission are found to be ηind = 0.65 . . . 0.9. The differential quantum efficiency
is small for small reflection factors R1,2 or for a small mirror lifetime τR Eq. (3.95). The more power is
coupled out of the resonator, the higher the intensity modulation sensitivity dPa/d I = (hf/e)(τP /τR)
will be. Typical output powers are in the range Pa = 1 . . . 10 mW for communication lasers with current
modulation, and Pa = 100 . . . 500 mW for continuous wave applications.

The current-voltage characteristic of a laser diode is written as (saturation current IS0, threshold
current IS)

I = IS0

[
exp[β(U −RSI)

]
− 1
]

I ≤ IS ,

U = WG/e+RSI I ≥ IS .
(3.98)

The CB carrier density is assumed to be clamped to the threshold value for I > IS thereby fixing the
energetic difference of the quasi Fermi levels,

e(U −RSI) = WFn −WFp ≈WG . (3.99)

The series resistance is in the order RS = 1 . . . 10 Ω. The quantity β = 1/(κUT ) = 15 . . . 30 V−1 is
connected to the thermal voltage UT = kTRT/e (UT = 25 mV at room temperature TRT = 293 K).
Typical values for the ideality factor κ are κ = 1.3 . . . 2.7.

Small-signal intensity modulation To encode information into the laser beam, the optical output
of the laser must be modulated. One of the unique attractions of a laser diode is the possibility of directly
modulating the output light power by modulating the injection current. Because of amplitude-phase
coupling, Sect. 45 on Page 89, this current modulation leads to a change in the laser mode frequency
(chirping). For very high speed communications above bit rates of 10 Gbit/s the chirping of optical pulses
can be avoided by employing a continuous wave laser diode and using an external modulator with a much
better chirp behaviour, |α| ≤ 1.

This section discusses analytical small-signal approximations of the highly nonlinear rate equations
Eq. (3.80), and in the following section we demonstrate some large-signal properties by numerical solu-
tions.
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Perturbation ansatz We assume a static operation point above threshold given by the time-
independent quantities NP0, nT0, G0 = G(nT0, NP0), τP , τeff, εG in Eqs. (3.80), (3.90), and small time-
dependent perturbations NP1(t), nT1(t), I1(t),

NP (t) = NP0 +NP1(t), G(t) = G0 +
∂G0

∂nT0
nT1(t) +

∂G0

∂NP0
NP1(t),

nT (t) = nT0 + nT1(t), G0 = G(nT0, NP0), I(t) = I0 + I1(t).

(3.100)

The differential gain rate ∂G0/∂nT0 has typical values of 1.8× 10−6 . . . 2.9× 10−6 cm3 s−1. Substituting
Eq. (3.100) into Eq. (3.80) and neglecting products of perturbation quantities, we solve the linearized rate
equations with a Fourier ansatz X1(t) = X1(ω) exp( jωt), where X1(ω) is the complex amplitude at the
modulation frequency f = ω/(2π),

NP1(ω)
(

jω +
1

τP
− ΓG0

1 + εG
ΓNP0

V

)
=
( Q
τeff

+
NP0

V

∂ΓG0

∂nT0

)
nT1(ω)V, (3.101)

nT1(ω)V
(

jω +
1

τeff
+
NP0

V

∂ΓG0

∂nT0

)
=
I1(ω)

e
− ΓG0

1 + εG
ΓNP0

V

NP1(ω) .

Elimination of nT1(ω) leads to the modulation transfer function

NP1(ω)

I1(ω)
=

(
NP0

V
∂ΓG0

∂nT0
+ Q

τeff

)
ω2
rτP︸ ︷︷ ︸
≈ 1

ω2
r

( jω)2 + 2γr( jω) + ω2
r

(3.102)

with the angular relaxation frequency ωr and the damping constant γr,

ω2
rτP =

NP0

V

∂ΓG0

∂nT0
+

� 1︷︸︸︷
τP
τeff

( 1

τP
− ΓG0︸ ︷︷ ︸
≈ 0

≈ 1︷ ︸︸ ︷
1−Q

1 + εG
ΓNP0

V

)
︸ ︷︷ ︸

≈ 0

≈ NP0

V

∂ΓG0

∂nT0
,

2γr =
1

τeff
+
NP0

V

∂ΓG0

∂nT0
+

1

τP

(
1−

≈ 1︷ ︸︸ ︷
ΓG0τP

≈ 1− εG
ΓNP0
V︷ ︸︸ ︷

1

1 + εG
ΓNP0

V

)
(3.103)

≈ 1

τeff
+
NP0

V

∂ΓG0

∂nT0
+ ΓG0 εG

ΓNP0

V︸ ︷︷ ︸
=ω2

rKr

.

For large photon numbers NP0 the relaxation frequency and the damping constant are determined by
the differential gain ∂ΓG0/∂nT0. For low photons numbers the effective electron lifetime τeff controls the
damping. Inside the laser two reservoirs exchange their energy: the electromagnetic energy stored in the
resonator, and the electronic energy states. An increase in photon number reduces the carrier number,
and vice versa.

This relaxation oscillation dies out with a damping constant γr, because photons and electrons have
finite lifetimes τP and τeff, respectively. Such an energy exchange may be compared to the behaviour of
a damped resonance circuit, where the inductor as a magnetic energy store and the capacitor storing the
electric field energy are interacting. By a sudden perturbation (e. g., by a injection current step) damped
oscillations exp( jωt) are excited. Values of jω are defined by the zeros of the denominator in Eq. (3.102):

jω =

−γr ± j
√
ω2
r − γ2

r damped oscillation, γr/ωr < 1 ,
−γr aperiodic limit, γr/ωr = 1 ,

−γr ±
√
γ2
r − ω2

r aperiodic behaviour, γr/ωr > 1 .

(3.104)
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In the aperiodic region the slower decaying term describes the characteristic time dependence. The angular
frequency of the free oscillation is

√
ω2
r − γ2

r . The aperiodic limiting case can be reached for very large
photon numbers NP0. For a constant current amplitude |I1(ω)| = I1 = constω the modulation transfer
function Eq. (3.102) shows a maximum at the small-signal resonance angular frequency ωR,∣∣∣∣NP1(ω)/τP

I1/e

∣∣∣∣ → max : ωR =
√
ω2
r − 2γ2

r . (3.105)

A resonance is only possible for γr/ωr < 1/
√

2. The 3-dB bandwidth (no ripple nor resonance wanted!)
is defined by∣∣∣∣NP1(ω3 dB)

NP1(0)

∣∣∣∣ =
1√
2
, ω2

3 dB = (ω2
r − 2γ2

r ) +
√

(ω2
r − 2γ2

r )2 + ω4
r . (3.106)

Figure 3.21 displays the small-signal current-light transfer function as a function of the normalized current

Fig. 3.21. Modulus of current-light modulation transfer function as a function of normalized current modulation frequency
for various values of γr/ωr

modulation frequency. The resonance overshoot disappears for γr/ωr > 1/
√

2 (overcritical damping).
Because of ω2

r ∼ NP0, γ2
r ∼ N2

P0 the resonance overshoot becomes smaller with increasing operating
current. The 3-dB bandwidth becomes larger because ωr increases. However, γr increases faster than
ωr, and for critical damping γr/ωr = 1/

√
2 and large photon numbers the 3-dB modulation bandwidth

becomes maximum,

ωmax
3 dB = ωr , ωr = γr

√
2 ≈
√

2

2
ω2
r

(
τP +

εG
∂G0/∂nT0

)
,

ωmax
3 dB =

√
2

Kr
, Kr = τP +

εG
∂G0/∂nT0

.

(3.107)

This is the intrinsic maximum modulation bandwidth. Often it is not possible to operate the laser at this
operating point because of temperature limitations or because of the onset of multimode operation. In the
region of overcritical damping γr/ωr > 1/

√
2 the modulation bandwidth starts to decrease, Eq. (3.106).

The relaxation frequency could be enlarged by decreasing the photon lifetime τP (e. g., by reducing the
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resonator lengthL), but this broadens the spectrum, so that only the differential gain ∂G0/∂nT0 may be
manipulated for highest ωmax

3 dB. This can be achieved by a p-doping of the active layer, see also Page 64.
The differential gain ∂G0/∂nT0 becomes larger by a factor 5 if nA is increased from 5 × 1016 cm−3 to
5× 1018 cm−3. By using quantum film or quantum wire lasers the differential gain becomes even larger.
Relaxation frequencies of 38 GHz could be achieved.

Figure 3.22 shows the electric equivalent circuit if the laser diode. The “internal laser diode” may be
regarded as a short circuit because of the voltage clamping, Eq. (3.99). RS is the series resistance, CP
a parasitic parallel capacitance (in Fig. 3.25(b) parasitic pn-junctions in parallel to the active layer), LS
is the bond wire inductance, typically 1 nH /mm, RG the generator impedance. The cutoff frequencies
defined by ωRSCP = 1 and ωLS = RG should not impair the intrinsic modulation capability of the
device. For a cutoff frequency of 20 GHz at RS = 10 Ω, RG = 50 Ω the values CP < 0.8 pF, LS < 0.4 nH
should be chosen.

Fig. 3.22. Electric equivalent circuit of the laser diode. The internal laser diode may be regarded as a short circuit.

Large-signal intensity modulation A general analytic solution of the nonlinear rate equations (3.80)
is not known, so a specific numerical solution of the simplified normalized rate equations will be discussed,
Fig. 3.23. During the delay time td the normalized carrier density rises to N×T = 1. When the threshold

Fig. 3.23. Relaxation oscillation for a current step I× = 1.8. Parameters are τP = 2.5 ps, τeff = 1.5 ns, Q = 5× 10−4

is reached the photon number N×P starts rising. At first, the carrier density increases further, but when
the photon number has become large enough and the stimulated emissions are numerous, the carrier
density decreases. As long as N×T > 1 holds, the photon number increases further. When the condition
N×T < 1 is met, the gain rate becomes negative and the photon number decreases rapidly. Therefore the
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number of stimulated emissions decreases and the carrier number can be re-established by the injection
current.. When the threshold N×T = 1 is exceeded, the photon number increases again. A weakly damped
relaxation oscillation results for the parameters chosen in Fig. 3.23, which has not yet died out when the
current impulse is switched off. A small variation of the carrier density N×T causes very large changes in
the photon number N×P . When the current is switched on the carrier density starts with a finite slope
while the photon number has with a zero slope.

To calculate the delay time td when switching from Ioff < IS to Ion > IS the induced emission term
in the second rate equation (3.80) may be neglected. The solution of the resulting equation

dnT
dt

=
I

eV
− nT
τeff

(3.108)

for the initial condition Ioff < IS for t < 0, Ion > IS for t > 0 is

nT (t) =
τeff

eV

[
Ioff + (Ion − Ioff)

(
1− e−t/τeff

)]
. (3.109)

After the delay time td the threshold carrier density is reached,

nT (td) = nTS =
τeffIS
eV

, (3.110)

from which the delay time td results,

td = τeff ln
Ion − Ioff

Ion − IS
, IS ∼

1

τeff
, see Eq. (3.84). (3.111)

Thus, the effective carrier lifetime may be measured from the switch-on delay time td. For actually
modulating the laser, a bias current Ioff at or slightly above threshold IS is used.

Amplitude-phase coupling

Because of Eq. (3.40) the gain rate G is a function of the frequency f and (via the quasi Fermi levels)
a function of the carrier concentration nT , Eq. (3.20). This is also true for the modal power gain g and
consequently for the imaginary part of the refractive index −ni, Eq. (3.70). The real part n of the complex
refractive index n̄ depends on f, nT because of three reasons:

Band filling With the carrier injection the band-band absorption decreases because of the filling of
lower CB states, and the absorption energy hf1 = WG + ∆W1 increases (∆W1 increasing with
nT ). Therefore, ∆n < 0 for f < f1 and f > f1 according to the Kramers-Kronig relations47,
where f is outside the region of anomalous dispersion dn/ df < 0. For InP typical data are ∆n =
−7.7× 10−21nT / cm−3 at λ = 1.24µm, ∆n = −5.6× 10−21nT / cm−3 at λ = 1.55µm.

Coulomb interaction The interaction of carriers by coulomb forces reduces the bandgap, and the
absorption increases, especially in the vicinity of the bandgap energy hf2 = WG. Therefore, ∆n > 0
for f < f2 and for f > f2 result.

Free carrier The free-carrier absorption causes always ∆n < 0 at optical frequencies.

∆n = −e
2µ0λ

2

8π2n

( nT
mn

+
p

mp

)
= −4.485× 10−22

n

( λ

µm

)2[nT / cm−3

mn/m0
+
p/ cm−3

mp/m0

]
. (3.112)

The ratios mn/m0,mp/m0 are given in Table 3.3 on Page 60.

47Grau, G.; Freude, W.: Optische Nachrichtentechnik (Optical communications, in German), 3. Ed. Berlin: Springer-
Verlag 1991. Since 1997 out of print. Corrected KIT reprint 2005 in electronic form available from W. F. (w.freude@kit.edu).
Sect. 2.1.1 Page 13 ff., Appendix B Page 371 ff.
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At the oscillation frequency of a laser diode the combination of these effects leads to a reduced refractive
index n (∆n < 0) for increasing CB carrier density nT , and (via the Kramers-Kronig relations48) to an
increased gain constant g. With the help of Eq. (3.70) one defines a quantity α (α-factor, line broadening
factor, Henry factor)

α =
∂n/∂nT
∂ni/∂nT

= −2k0
∂n/∂nT

∂(Γg − αV )/∂nT
= −2k0

∂n/∂nT
∂(Γg)/∂nT

> 0. (3.113)

The last form of Eq. (3.113) assumes the loss constant αV to be independent of the carrier density
nT . Typical values for laser diodes are in the range α = 2 . . . 8. Therefore a correlation exists between
amplitude and phase of the laser diode oscillator. Spontaneous emissions cause amplitude and phase
changes. Because of Eq. (3.113) such an amplitude change gives rise to a secondary phase change, so that
a broadening of the emission line is to be expected.

For a stationary laser oscillation the operating point (subscript 0) is given by G(nT0) = 1/τP . This is
to be seen from Eq. (3.90) and (3.88) where G× = ΓG(nT0, NP0) τP = 1 may be deduced. The angular
optical frequency is ω0, Eq. (3.63). When changing the carrier density differentially, the gain rate G
varies, and the “instantaneous” (on the scale of an optical period 1/f0 slowly varying) optical frequency
ω deviates from its unperturbed value by a small amount dω. This frequency difference ∆ω defines the
time derivative of the optical phase, dϕ/dt = ∆ω. From Eq. (3.63) we find

d(ωn) =
∂(ωn)

∂ω
dω +

∂(ωn)

∂n
dn =

( ng︷ ︸︸ ︷
n+ ω

∂n

∂ω

)
dω + ω dn

!
= 0 ,

dω = − ω

ng
dn = − ω

ng

∂n

∂nT
dnT = − αω

2k0ng

∂(Γg)

∂nT
dnT ≈ ∆ω = ω − ω0 =

dϕ

dt
, (3.114)

dϕ

dt
=
α

2
vg
∂(Γg)

∂nT
∆nT ≈

α

2

∂(ΓG)

∂nT
∆nT .

However, with dvg/ dnT ,dng/ dnT 6= 0 the last form of Eq. (3.114) is only approximately valid,

∂(ΓG)

∂nT
=
∂(Γvgg)

∂nT
= vg

∂(Γg)

∂nT

1−
1
ng

∂ng
∂nT

1
Γg

∂(Γg)
∂nT

 ≈ vg ∂(Γg)

∂nT
. (3.115)

Because of Eqs. (3.76), (3.113) (α = 2 . . . 8) the ratios of the relative change of ng, g with nT are smaller
than 10−2. Therefore, Eq. (3.114) may be written with reference to Eqs. (3.71), (3.74) and neglecting
spontaneous emission as

dϕ

dt
=
α

2

( ∂(ΓG)

∂nT
∆nT + ΓG(nT0)︸ ︷︷ ︸
ΓG(nT )

= 0︷ ︸︸ ︷
− 1

τP

)
=
α

2

(
ΓG− 1

τP

)
=
α

2

1

NP

dNP
dt

. (3.116)

For the unperturbed stationary oscillation we have ω = ω0, dω = dϕ/dt = 0. A perturbation in the
carrier density dnT 6= 0 leads to a change in optical angular frequency, Eq. (3.114). The phase change
by amplitude-phase coupling may be incorporated into the basic equations (3.80). The relation for the
photon number is supplemented by an equation for the phase. Neglecting again spontaneously emitted
photons we find for the analytic electric field E(t) at the laser mirrors

dNP
dt

= NP

(
ΓG− 1

τP

)
,

dϕ

dt
=
α

2

(
ΓG− 1

τP

)
, E(t) ∼

√
NP (t) e j[ω0t+ϕ(t)] . (3.117)

For a measurement of α we derive the oscillation mode frequency dependence from Eq. (3.114),

dω0

dnT
= −ω0

ng

∂n

∂nT
≈ α

2

∂(ΓG)

∂nT
, α = 2

dω0

dnT

/
∂(ΓG)

∂nT
. (3.118)

By a measuring of the (effective) gain rate change and of the shift in angular resonance frequency ω0

with the carrier density nT the a-factor may be calculated.

48See Reference 47 on Page 89. Sect. 2.1.1 Page 13 ff., Appendix B Page 371 ff.
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LD spectrum

When the injection current is below threshold, the laser diode behaves like an LED and the output is
mainly due to spontaneous emission and, hence, the spectrum is broad. As the current increases beyond
threshold, the longitudinal modes having a larger gain and a smaller resonator loss begin to oscillate,

Fig. 3.24. Longitudinal mode spectrum of a gain-guided Fabry-Perot laser diode (see Page 91). Frequency-dependent net

gain constant g(f) ∼ r(M)
ind (f)/NP Fig. 3.14(b), longitudinal mode distance ∆fz Eq. (3.65), half-power bandwidth of spectral

envelope ∆fH

and the spectrum changes significantly. As the current is further increased, the output spectrum becomes
spectrally more concentrated, Fig. 3.24 for a gain-guided Fabry-Perot laser diode (see Footnote 45 on
Page 82 and Sect. 45 on Page 91). The longitudinal Fabry-Perot resonator modes are separated by the
spectral distance ∆fz, Eq. (3.65) on Page 78. The half-power width ∆fH of the spectral envelope is given
by (αV is the modal or effective loss)

∆fH Pa = const× nsp(1 + α2)hfv2
g(αV + αR)αR . (3.119)

The quantity ∆fH of the laser oscillator cannot be compared to the spontaneous linewidths Eq. (3.33),
(3.61) on Pages 68, 76. It is proportional to the reciprocal of the total output power Pa through both
mirrors. Typical values for GaAs gain-guided lasers are ∆fH Pa = 3 000 GHz mW, i. e., with Pa = 1 mW
and ∆fz = 100 GHz about 30 modes oscillate simultaneously, while at Pa = 10 mW there remain only 3
modes. For index-guided lasers even single-mode oscillation may be achieved.

Devices

As illustrated in Figs. 3.1, 3.5, a simple laser resonator (Fabry-Perot resonator) is a rectangular cavity
with six walls, all of which should provide good photon and carrier confinement to reduce the cavity loss.
Among the six walls, two are at the longitudinal ends of the cavity (z = 0, L) which need to couple light
out, and two are the heterojunctions of a 3 or 5-layer heterostructure (x = ±d/2) which achieve both
carrier and photon confinement from the energy bandgap and refractive index differences, respectively,
Fig. 3.10. To provide the confinement at the two transverse sides (y = ±b/2), two basically different
structures have been used, namely gain-guided and index-guided lasers, Fig. 3.25.

Gain-guided lasers A gain-guided laser, Fig. 3.25(a), has a structure that confines the transverse
current flow. There is no physical confinement for photons on the two sides, but the field is concentrated
near the z-axis, because g − αV = −2k0ni (see Eq. (3.70)) has an on-axis maximum and decreases with
increasing |y|. This profile is due to a lateral decrease of the current density as in Fig. 3.25(a) resulting in
a corresponding reduction of g, but it is also possible to increase the lateral loss αV by moving absorbing
regions nearer to the active zone, dashed line. Naturally, the (effective) real part n of the complex
refractive index depends on y, too. The high-current region has a lower refractive index causing even
an antiguiding effect. For a gain-guided laser the waveguiding by the lateral decrease of ni dominates.
Because gain-guided lasers have no strong transverse photon confinement, they have a relatively large
threshold current in the order of IS = 100 mA.
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Fig. 3.25. Basic laser diode structures. (a) Gain-guided laser (b) Index-guided laser. The origin of the coordinate system
is located in the centre of the active zones (p-Kontakt = p-contact, Isolator = insulator, aktive Zone = active zone).

As mentioned49 when discussion the rate equations on Page 81 ff., a spontaneous-emission correction
factor Ke = 10 . . . 20 has to be introduced for gain-guided lasers. This comes from the non-orthogonality
of the gain-guided modes.

Index-guided laser To provide a better photon confinement, index difference must be introduced on
the two transverse sides y = ±b/2. Laser diodes that add the index difference are called index-guided
lasers, Fig. 3.25(b). Even without a current the strip waveguide cavity is defined, buried into the material
with larger bandgap, i. e., lower refractive index. Such a buried-heterostructure laser introduces another
two heterojunctions on the lateral sides (total four heterojunctions) to provide both carrier and photon
confinement. Because of the excellent confinement, the threshold current can be as low as IS = 10 mA.

Vertical cavity surface emitting laser V ertical cavity surface emitting lasers (VCSEL, pronounced
["vIks@l]) are semiconductor lasers which emit perpendicularly to their pn-junction plane in a manner
analogous to that of a surface-emitting LED, and feature circular, low-divergence beams. This new class
of lasers emerged during the 1990s50,51,52. VCSEL operate in a single longitudinal mode due to an
extremely small cavity length L = λe/2 ≈ 1µm . The mode spacing ∆fz = c/(ngλe) = c/λ ≈ 300 THz
for λ = 1µm (Eq. (3.65) on Page 78) exceeds the gain bandwidth ∆fH ≈ 12 THz by far (Eq. (3.61) on
Page 3.61).

The properties of VCSEL are attractive for many purposes. Traditional edge-emitting diode lasers only
partially fulfill these requirements. Such lasers have elliptical, divergent beams which must be optically
corrected in order to collimate the beam even over short distances. Furthermore it is often necessary to
isolate the laser from back-reflection of the emitted light into the resonator, which can lead to changes in
the laser’s output characteristics. The divergent, elliptical beam is a result of diffraction at the rectangular
emission area of a conventional diode laser resonator. The divergence varies inversely with the size of this
emission area. Consequently the beam divergence perpendicular to the junction is significantly greater
than parallel to it, see Fig. 3.26(a).

In order to fully control the emitted beam profile it is necessary to define the geometry of the emission
area. This is only possible with a vertical resonator, perpendicular to the p-n junction plane, since the
active layer is parallel to the emission area, Fig. 3.26(b). To obtain a round, low-divergence beam, a
circular output complex may be applied to the entire emitting area. In the case of a vertical resonator
the length of the gain medium is defined by the thickness of the pn-junction. In order to achieve laser

49See Footnote 45 on Page 82
50See Sect. 5.2.4 Page 191–192 in Ref. 3 on Page 49
51Li, H.; Iga, K.: Vertical-cavity surface-emitting laser devices. New York: Springer 2001
52Laser Components (UK) Ltd. Goldlay House, 114 Parkway, Chelmsford, Essex. CM2 7PR UK.

http://www.lasercomponents.co.uk
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(a) (b) (c)

Fig. 3.26. Edge-emitting and vertically-emitting laser diodes (a) edge-emitting laser diode and far-field radiation charac-
teristic (b) VCSEL layer structure. p-doped DBR mirror: 25 layers Al0.3Ga0.7As/AlAs; active zone: 220 nm Al0.3Ga0.7As
with 3 Al0.12Ga0.88As quantum films, height about 7 nm each; n-doped DBR mirror: 40 layers Al0.3Ga0.7As/AlAs (c) mi-
croscopic image of VCSEL (all after Ref. 52 on Page 92)

operation, this must be compensated by the use of highly efficient distributed Bragg reflectors as resonator
mirrors. The lower resonator mirror is made up of 40 alternating layers of AlxGa1−xAs and AlAs, each
layer λe/4 thick, which give a power reflection factor in excess of R1 = 99.99 %. The output top mirror,
with twenty-five λe/4 layers, has a reflectivity of R2 = 99.9 %. The high resonator efficiency and small
gain medium volume combine to give threshold currents of only a few mA, which means that the low
operating currents make VCSEL suitable for any application.

A further advantage of this mirror design is that any light with a different wavelength, reflected back
towards the laser from another part of the optical system, cannot re-enter the resonator. VCSEL are
effectively isolated against such reflections due to their DBR output coupler structure. The resonator
design also means that the laser emission is single-mode. The desired wavelength is achieved by using the
correct layer structure.

VCSEL may feature a special mesa structure which ensures that all additional transverse modes
are suppressed. The result of this is predominantly single-mode emission with a correspondingly narrow
emission linewidth (< 50 MHz at λ = 780 nm, for example). This mode will tune within the gain profile
as the laser temperature is varied, which allows VCSEL to be temperature-tuned over a range of several
nanometers, without mode hopping. The typical tuning rate, about 0.4 nm /mA, is significantly higher
than in an edge emitter. The vertical structure has a further significant advantage: the laser may be
tested before bonding and whilst still on the wafer. Furthermore, VCSEL may be easily incorporated into
electronic integrated circuits and are also highly suitable for use in 2-dimensional arrays.

Popular VCSEL are offered53 with wavelengths in the range 760 . . . 960 nm. single-mode output powers
are typically 0.3 . . . 0.5 mW, with 5 mW multimode versions also available.

Comparison between edge-emitting lasers and VCSEL The technology of VCSEL is showing
great promise as a low cost alternative in new applications such as very short reach (VSR) transceivers,
tunable and high power pump lasers. Consequently, the adoption of VCSEL-based optoelectronics could
be the ultimate cost reduction vehicle carriers are searching for54.

Although advances continue in edge emitter based technology, it seems evident that it just may be a
case of diminishing returns. Edge emitter technology was a key enabler of optical communication as we
know it today. First used in short reach, single channel applications, the edge emitter evolved to support
DWDM and long haul transmission. With the introduction of EDFA, edge emitters adapted to pump laser

53See Ref. 52 on Page 92
54Hays, T.: A new breed of laser emerges on the optical frontier. Fiber Optic Technology — formerly Fiberoptic Products

News (2005). The following section is literally quoted from http://fiberoptictechnology.net/Scripts.
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applications first at 980 nm and later at 1 480 nm. Edge emitters also filled the vital role of high power
continuous wave (CW) lasers for lithium niobate modulators and then morphed once again to emerge in
an integrated source modulator combo known as electro-absorptive modulated (EAM) lasers. In spite of
these amazing accomplishments, edge emitter innovations now seem to be few and far between. In fact,
recent improvements have been accompanied by some level of manufacturing/process heroics that come
with a hefty yield-cost impact — not exactly the solution carriers are looking for.

To date, VCSEL have earned a reputation as a superior technology for short reach applications
such as fibre channel, Ethernet and intra-systems links (among switches, routers and hubs inside central
offices). Within the first two years of commercial availability, VCSEL displaced edge emitters in the local
area networks. Consequently, since VCSEL were first adopted in short reach applications, many have
prematurely concluded that VCSEL are limited to low power, short wavelength applications. Conversely,
a few companies are poised to prove otherwise as recent announcements suggest significant strides in the
areas of 1 310 nm source lasers, 1 550 nm tunable lasers and finally high power pump lasers.

VCSEL are grown, processed and tested while still in the wafer form. As such, there is significant
economy of scale resulting from the ability to conduct parallel device processing, whereby equipment
utilization and yields are maximized and set up times and labor content are minimized. In the case of
a VCSEL, the mirrors and active region are sequentially stacked along the x-axis (perpendicularly to
the pn-junction, see Fig. 3.5 on Page 58) during epitaxial growth. The VCSEL wafer then goes through
etching and metallization steps to form the electrical contacts. At this point the wafer goes to test where
individual laser devices are characterized on a pass-fail basis. Finally, the wafer is diced and the lasers
are binned for either higher-level assembly (typically > 95 %) or scrap (typically 5 %).

In a simple Fabry-Perot edge emitter (DFB edge emitters require additional etch and re-growth steps)
the growth process also occurs along the x-axis, but only to create the active region, as mirror coatings
are later applied along the y-axis (in the junction plane). After epitaxial growth, the wafer goes through
the metallization step and is subsequently cleaved along the y-axis, forming a series of wafer strips. The
wafer strips are then stacked and mounted into a coating fixture. The x-axis edges of the wafer strips are
then coated to form the device mirrors. Now the wafer strips are diced to form discrete laser chips, which
are then mounted onto carriers. Finally, the laser devices go in to test where typically more than 50 % of
DFB are scrapped.

It is also important to understand that VCSEL consume less material. In the case of a 3 in wafer, a
laser manufacturer can build about 15 000 VCSEL or approximately 4 000 edge emitters. Considering the
2 : 1 yield advantage (DFB edge emitter) combined with a 4 : 1 wafer throughput edge, the VCSEL cost
advantage is obvious.

The main disadvantage comes from the fact that VCSEL are routinely fabricated only in the short-
wavelength region λ < 1µm which prevents applications in long-haul transmission systems operating near
the fibre loss minimum at λ = 1.55µm. However, recent progress lead to VCSEL at 1.55µm with threshold
currents of 0.5 mA. If biased at 5 mA they can be directly modulated with 2.5 Gbit/s for a robust upstream
WDM transmission in a low-cost passive optical access network55. Recent progress56 led to transmitting
line rates up to 115 Gbit/s over a 4 km long single-mode fibre using a directly modulated 1.55µm single-
mode VCSEL with discrete multi-tone (DMT) modulation (a variety of orthogonal frequency division
multiplexing, OFDM) and direct detection. Also coherent transmission over 5 × 8 km single-mode fibre
was successfully demonstrated57 with line rates (data rates) of 400 Gbit/s (333 Gbit/s).

55Wong, E.; Zhao, X.-x.; Chang-Hasnain, C. J.; Hofmann, W.; Amann, M. C.: Uncooled, optical injection-locked 1.55µm
VCSELs for upstream transmitters in WDM-PONs. Technical Digest Optical Fiber Communication Conference (OFC’06),
Anaheim (CA), USA, 05.–10.03.2006. Postdeadline Paper PDP50

56C. Xie, P. Dong, S. Randel, D. Pilori, P. Winzer, S. Spiga, B. Kögel, C. Neumeyr, M.-C. Amann: Single-VCSEL
100-Gb/s short-reach system using discrete multi-tone modulation and direct detection. Technical Digest Optical Fiber
Communication Conference (OFC’15), Los Angeles (CA), USA, 22.–26.03.2015. Paper Tu2H.2

57C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kögel, C. Neumeyr, M.-C. Amann: 400-Gb/s PDM-4PAM
WDM system using a monolithic 2× 4 VCSEL array and coherent detection. J. Lightw. Technol. 33 (2015) 670–677
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3.2 Modulators

Modulation superimposes a low frequency signal on a high frequency carrier wave. The direct modulation
of semiconductor lasers suffers from modulation frequency limitations, chirp, and relaxation oscillation.
Therefore it is advantageous to operate the laser as a continuous wave (CW) source, and to modulate the
field or the intensity with an external modulator, The external modulators can be broadly classified58 as
electro-absorption type or electro-optic type.

3.2.1 Electro-absorption modulator

Electro-absorption modulators (EAM) exploit the fact that the absorption edge of a semiconductor quan-
tum film59 can be shifted under the influence of an electric field ~E normal to the film layer. This so-called
quantum-confined Stark60 effect is illustrated in Fig. 3.27.

(a) Energy-band diagram of double-hetero-
structure quantum film with and without ap-
plied electric field E1,2 ∼ Vb (bias voltage Vb)

(b) Measured transmission spectra
of a Ge electro-absorption modula-
tor for various bias voltages Vb

(c) Measured frequency response of
a Ge electro-absorption modulator
for various bias voltages Vb

Fig. 3.27. Electro-absorption modulator based on the quantum-confined Stark effect. (a) Energy-band diagrams of a
quantum film with and without a bias field. The tilt of the band diagram reduces the energy difference between the
(schematicall drawn) electronic wave function in the conduction band (CB) and the hole wave function in the valence band

(VB) from a photon absorption energy of hf
(a)
1 to hf

(a)
2 < hf

(a)
1 . [Modified from Ref. 61, Fig 4] (b) Transmission spectra

of an electro-absorption modulator and its (c) frequency response for various bias voltages. [After Ref. 62, Figs. 3(a), 4(a)]

The energy-band diagram of an unbiased and a biased quantum film61 is shown in Fig. 3.27(a). With

a bias field ~E2 6= 0 the bands tilt, and the energy difference between the electronic wave function in
the conduction band (CB) and the hole wave function in the valence band (VB) reduces from a photon

absorption energy of hf
(a)
1 to hf

(a)
2 < hf

(a)
1 . This is also illustrated in the measured transmission spectra

Fig. 3.27(b) of an actual EAM62. Modulation bandwidths of 30 GHz and above can be achieved as can
be seen from the measurement data in Fig. 3.27(c).

Because in an EAM the absorption is switched, a certain chirp of the optical carrier cannot be avoided.
The situation is similar to the case of amplitude-phase coupling for a laser diode. However, in the case of
an EAM, the “gain” constant g in Eq. (3.113) on Page 90 is negative and therefore describes loss.

58H. Yasaka, Y. Shibata: Semicondurctor-based modulators. In: H. Venghaus, N. Grote (Eds.), Fibre optic communication
— Key devices. Heidelberg: Springer-Verlag 2012. Chapter 6

59For the naming “quantum film” (instead of “quantum well”) see Footnote 27 on Page 67
60Johannes Stark, German physicist, ? Schickenhof (Germany) 15.4.1874, †Traunstein (Germany) 21.06.1957. Won the

1919 Nobel Prize for Physics for his discovery in 1913 that an electric field would cause splitting of the lines in the spectrum
of light emitted by a luminous substance; the phenomenon is called the Stark effect. — Stark became a lecturer at the
University of Göttingen in 1900, and from 1917 until he retired in 1922, he was a professor of physics at the University
of Greifswald and, later, at the University of Würzburg (all in Germany). A supporter of Adolf Hitler and an anti-semitic
racial theorist, Stark was president of the Reich Physical-Technical Institute from 1933 to 1939. In 1947 a denazification
court sentenced him to four years in a labour camp.

61S. Mokkapati, C. Jagadish: ‘III-V compound SC for optoelectronic devices,’ materialstoday 12 (2009) 22–32.
http://www.sciencedirect.com/science/article/pii/S1369702109701105

62Ning-Ning Feng, Dazeng Feng, Shirong Liao, Xin Wang, Po Dong, Hong Liang, Cheng-Chih Kung, Wei Qian, Joan Fong,
Roshanak Shafiiha, Ying Luo, Jack Cunningham, Ashok V. Krishnamoorthy, Mehdi Asghari: 30 GHz Ge electro-absorption
modulator integrated with 3µm silicon-on-insulator waveguide. Opt. Express 19 (2011) 7062–7067
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3.2.2 Electro-optic modulator

An electro-optic modulator makes use of the electro-optic effect or Pockels63 effect, see also Eq. (A.10) on
Page 177 and the following text. The second-order nonlinear susceptibility χ(2) is controlled in proportion
to a “low” radio-frequency (RF) controlling field ERF, which is in proportion of a controlling voltage V .
This enables a change of the refractive index n in a waveguide of geometrical length L propagating
(k0 = ω/c = 2π/λ) an optical wave Eopt. The resulting optical phase ϑ is

ϑ = k0nL ∼ ERFL ∼ V L, VπL for an optical phase shift ∆ϑ = π. (3.120)

The VπL-product is a a quality metric and tells how small the applied voltage V = Vπ can be to
still achieve a phase change ∆ϑ = π in a waveguide length L. Importantly, the Pockels effect reacts
virtually instantaneously to the controlling voltage. In addition, the usual Pockels media are lossless
in the wavelength region of interest. Frequently used χ(2)-media are lithium niobate (LiNbO3), gallium
arsenide (GaAs), indium phosphide (InP), and χ(2)-nonlinear organic materials64,65.

Other options are using the plasma dispersion effect66,67 in depleted pn-junctions, or the injection of
carriers into pn-junctions. Both, depletion and injection of charge carriers in an active volume, changes
the refractive index in this region. However, the plasma dispersion effect is never lossless (hence cannot
realize a pure phase modulation), and it suffers from speed limitations due to the finite carrier lifetime.

Mach-Zehnder modulator

Such a pure phase modulator becomes significantly more versatile when inserted into the arms of a
Mach68-Zehnder69 interferometer (MZI) as in Fig. 3.28(a). The transfer function of a MZI modulator
(Mach-Zehnder modulator for short, MZM) can be easily calculated when taking into account that the
power is split (and combined) evenly between the arms, i. e., the fields have a split (or combine) factor
of 1/

√
2.

63Friedrich Carl Alwin Pockels, German physicist, ?Vicenza (Italy) 18.6.865, †Heidelberg (Germany) 29.8.1913. He
obtained a doctorate from the University of Göttingen in 1888, and from 1900 to 1913 he was professor of theoretical physics
at the University of Heidelberg. In 1893 he discovered that a static electric field applied to certain birefringent materials
causes the refractive index to vary, approximately in proportion to the strength of the field. The coefficient of proportionality
is of the order of 10× 10−10 V−1 to 10× 10−12 V−1. This phenomenon is now called the Pockels effect. — His sister Agnes
Pockels (1862–1935) was also a physicist. [Cited from http://en.wikipedia.org/wiki/Friedrich Carl Alwin Pockels and
http://de.wikipedia.org/wiki/Friedrich Pockels]

64Leuthold, J.; Koos, C.; Freude, W.: ‘Nonlinear silicon photonics,’ Nature Photon. 4 (2010) 535–544
65Leuthold, J.; Koos, C.; Freude, W.; Alloatti, L.; Palmer, R.; Korn, D.; Pfeifle, J.; Lauermann, M.; Dinu, R.; Jazbinsek,

M.; Waldow, M.; Wahlbrink, T.; Bolten, J.; Fournier, M.; Yu, H.; Wehrli, S.; Fedeli, J. M.; Gunter, P.; Bogaerts, W.:
‘Silicon-organic hybrid electro-optical devices’, IEEE J. Sel. Topics Quantum Electron. 19 (2013) 3401413

66See Ref. 64 on Page 96
67G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson: ‘Silicon optical modulators,’ Nature Photon. 4 (2010)

518–526
68Ludwig Mach, German inventor, ?Prague 18.11.1868, † 1951. Eldest son of Ernst Mach. Doctorate in medicine 1895

from the University of Prague. Cooperated with his father in topics of optics and instrument design. Developed together
with his father the Mach-Zehnder interferometer in 1892. [Cited after http://de.wikipedia.org/wiki/Ludwig Mach]

Ernst Mach, Austrian physicist and philosopher, ?Chirlitz-Turas (Moravia, Austrian Empire) 18.2.1828, †Haar (Germany)
19.2.1916. Established important principles of optics, mechanics, and wave dynamics and supported the view that all
knowledge is a conceptual organization of the data of sensory experience (or observation). — He received his doctorate in
physics in 1860 from the University of Vienna and taught mechanics and physics in Vienna until 1864, when he became
professor of mathematics at the University of Graz. Mach left Graz to become professor of experimental physics at the
Charles University in Prague in 1867, remaining there for the next 28 years. Between 1873 and 1893 he developed optical
and photographic techniques for the measurement of sound waves and wave propagation. In 1887 he established the principles
of supersonics and the Mach number—the ratio of the velocity of an object to the velocity of sound.

69Ludwig (Louis Albert) Zehnder, Swiss physicist, ? Illnau (Switzerland) 4.5.1854, †Oberhofen (Thunersee, Switzerland)
24.3.1949. Studied mechanical engineering in Zürich 1873–1875 and cooperated with Wilhelm Conrad Röntgen. Doctorate
in physics from University of Gießen (Germany) in 1887, habilitation in physics from University of Basel (Switzerland)
in 1890. Professor in Freiburg (Germany) in 1893, München (Germany) in 1901, and Basel (Switzerland) in 1919–1945.
Published the construction of a new interferometer in August 1891 (now the Mach-Zehnder interferometer). Independently,
Ludwig Mach had constructed a similar apparatus, which he published seven months later in the same journal. [Cited after
http://de.wikipedia.org/wiki/Ludwig Zehnder]
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(a) Mach-Zehnder interferometer
modulator with voltage-controlled
modulator sections in both arms

(b) Amplitude transfer function in
dependence of the phase difference
∆ϑ in both arms

(c) Intensity transfer function in
dependence of the phase difference
∆ϑ in both arms

Fig. 3.28. Schematic and characteristics of an electro-optic modulator in form of a Mach-Zehnder interferometer (MZI)
with phase modulators in both arms based on the Pockels effect. (a) Schematic of a Mach-Zehnder interferometer with
input waveguide splitter, phase modulator sections ϑ1,2 (t), bias phase adjustment ϑbias, optical electric fields E1,2 (t)
at the outputs of both arms, and output waveguide combiner. Electrical amplifiers supply the control voltages V1,2 (t).
(b) Amplitude transfer function of an MZI push-pull modulator as a function of the phase difference ∆ϑ = ϑ1 +ϑbisas−ϑ2

in both arms. (c) Intensity transfer function of an MZI push-pull modulator as a function of the phase difference ∆ϑ =
ϑ1 + ϑbisas − ϑ2 in both arms [modified from Fig. 2.21(a) and 2.22 of Ref. † on the Preface page]

With this information, the complex amplitude at the interferometer output reads in matrix notation
(using also a column and a row matrix)

Eout =
(

1/
√

2 1/
√

2
)( e j(ϑ1+ϑbias) 0

0 e jϑ2

)(
1/
√

2

1/
√

2

)
Ein . (3.121)

From Eq. (3.121) the amplitude transfer function T follows,

T =
Eout

Ein
= e

j
(
ϑ1+ϑ2

2 +
ϑbias

2

)
cos

(
∆ϑ

2

)
, ∆ϑ = ϑ1 − ϑ2 + ϑbias . (3.122)

When varying ϑ1,2, both, the phase and the amplitude of T change. However, if ϑ1 = −ϑ2 is chosen, i. e.,
if V1 = −V2 holds, the phase factor remains constant (but the sign of T could change). This so-called
push-pull operation mode is most commonly used. If ϑ1 = ϑ2 is maintained in push-push mode, we have
a pure phase modulator.

In the following, we concentrate on push-pull operation, for which the field transfer characteristic is
displayed in Fig. 3.28(b), (c). The bias determines the operating point. For an optimum field linearity it
has to be chosen at the null-point. The quadrature-point is optimum for intensity linearity, where the
intensity transfer characteristic is

|T |2 =

∣∣∣∣Eout

Ein

∣∣∣∣2 = cos2

(
∆ϑ

2

)
=

1

2
(1 + cos∆ϑ) , ∆ϑ = ϑ1 − ϑ2 + ϑbias . (3.123)

The characteristic Eq. (3.123) is displayed in Fig. 3.28(c).
With the MZM described by the field transfer function Eq. (3.122), any point in the complex constel-

lation plane (any amplitude and phase) could be addressed by a proper choice of the modulation voltages
V1 ∼ ϑ1 and V2 ∼ ϑ2. However, then a sophisticated control of these modulation voltages V1,2 is required,
and therefore the more tolerant optical IQ-modulator is preferred for this purpose.

Optical IQ-modulator

For optical IQ-modulation we need to realize the scheme as discussed in Sect. 2.3.2 on Page 28 ff. To this
end we use two MZM nested in a MZI, Fig. 3.29. The control voltages V1 (t) and V2 (t) represent the
in-phase and quadrature signals I (t) and Q (t), respectively, as specified in Eq. (2.43) on Page 28. The
combiners in Fig. 2.7 are assumed to perform a summation (factors 1/

√
2 are omitted), and the phase

ϑbias = π/ 2 advances the local oscillator (LO) signal cos (ω0t) to be − sin (ω0t). This is in contrast to
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Fig. 3.29. Optical IQ-modulator with two push-pull Mach-Zehnder interferometer modulators nested in a Mach-Zehnder
interferometer. The control voltages V1 (t) and V2 (t) represent the in-phase and quadrature signals I (t) and Q (t), respec-
tively, as specified in Eq. (2.43) on Page 28. [Modified from Fig. 2.25 of Ref. † on the Preface page]

Fig. 2.7 on Page 29, where the the symbol Σ stands for a difference-forming combiner, while the phase of
the LO is retarded by +π/ 2 to be + sin (ω0t). The result, however, is the same. The output electric field
can be written as

Eout = (V1 + jV2) e jω0t, Eout = <{Eout} = V1 cos (ω0t)− V2 sin (ω0t) . (3.124)

3.3 Implementation of selected modulation formats

In the following, we discuss the implementation of a few selected modulation formats like non-return to
zero on-off keying (NRZ-OOK), return to zero on-off keying (RZ-OOK), duobinary (DB) and alternate
mark inversion (AMI), and polarization mode shift keying (PMSK).

3.3.1 Non-return to zero on-off keying

Non-return to zero on-off keying (NRZ-OOK) data are generated by either of the following schemes:

• Directly modulating a laser diode by switching the injection current. Directly modulated lasers
(DML) can be operated with data rates up 20 Gbit/s. However, significant chirp leads to distortions
due to increased chromatic dispersion in the transmitting fiber.

• Externally modulating a CW laser diode with an electro-absorption modulator. This technique is
good for data rates up to 40 Gbit/s. Again, a relatively small chirp associated with the absorption
change limits the signal quality.

• Externally modulating a CW laser diode with a MZI modulator. This technique is used for data
rates up to 40 Gbit/s. Time division multiplexing techniques enable operation up to 160 Gbit/s. If
used in push-pull operation mode, there is basically no chirp.

Characteristic for the optical NRZ spectrum are a strong carrier component at the optical carrier fre-
quency, see Fig. 2.12(c) on Page 37 and Fig. 2.13(a) on Page 40. The NRZ spectrum has a spectral width
close to 2/T (twice the symbol rate). There are spectral zeros at frequency offsets of integer multiples of
± 1/T from the carrier frequency, Eq. (2.58) on Page 38.
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3.3.2 Return to zero on-off keying

The idea for generating a RZ format is to encode data with one of the NRZ schemes, and then “carve” an
RZ shape into the NRZ data using a second MZM in push-pull mode that avoids chirp. The modulator
is biased at a phase ϑbias, and driven by a sinusoidal voltage in synchronism with the data encoder. The
percentage of power left in the optical pulses after carving is indicated by the duty cycle.

Figure 3.30(a) depicts the setup for an RZ duty cycle of 50 %. The total voltage swing over the two
arms of the modulator is such that (ϑ1 − ϑ2)max = π/ 2. The MZM is biased at ϑbias = π/ 4. The carver’s
modulation frequency equals the NRZ symbol rate 1/T . By reducing the voltage swing applied to the
carver MZM and by adjusting the bias, even lower RZ duty cycles can be obtained. However, one typically
does not go below 36 %, lest fewer pulse energy results in a jittery signal.

Fig. 3.30. Implementation of RZ-OOK with a pulse “carver” driven in synchronism with the data by a sinusiodal voltage.
Eye diagrams of NRZ and resulting RZ data are shown as insets. (a) Pulse carver for RZ pulses with 50 % duty cycle
(b) Pulse carver for RZ pulses with 33 % duty cycle. In this case, the drive voltage is twice the drive voltage for a 50 % duty
cycle. [Modified from Fig. 2.32 of Ref. † on the Preface page]

A different RZ carver for a 33 % duty cycle is shown in Fig. 3.30(b). Here the modulator voltage swing
is doubled such that (ϑ1 − ϑ2)max = π, and the bias is set to ϑbias = 0. The carver’s modulation frequency
1/ (2T ) equals half the NRZ symbol rate.

The 50 % and 33 % duty cycle schemes provide almost perfect signal quality. Unfortunately, this
comes at the price of an additional modulator with its associated driver electronics. A scheme with a
single modulator would therefore be preferred. To reduce the number of modulators, one could combine
the function of the electrical clock from the pulse carver and the data signal into the electronic circuitry,
and then direct these combined electrical signals to a single modulator. This scheme, however, requires
electrical circuits and an optical modulator with an exceptionally wideband frequency response.

Pulse carver schemes that produce chirped pulses70 exist as well, if ϑ1 6= −ϑ2 is chosen for intentionally
inducing a chirp, e. g., for pre-compensating fibre dispersion. A chirped RZ-OOK spectrum (50 % CRZ-
OOK) with various phase modulation indices η is displayed in Fig. 2.15(a) on Page 44.

What are the advantages of using RZ-OOK over NRZ-OOK for transmission? The answer is that the
RZ format has a receiver sensitivity advantage of about 1 . . . 3 dB. This is a significant improvement, since
a 3 dB advantage translates in doubling the transmission distance. The reasons for this improvement are:

• For the same average power, a RZ signal has more power within the pulse centre where sampling
takes place. This gives a RZ format a typical 2 dB advantage. This is due to the fact that in a RZ

70See Ref. 87 on Page 45
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signal all of the energy is confined to within part of a symbol slot. As a drawback, fibre nonlinearities
due to high peak powers can lead to degradation.

• Second, RZ signals suffer less from inter-symbol interference (ISI), since leading and trailing edges
of the pulse do not easily extend into neighbouring time slots.

One now might wonder if reducing the duty cycle below 33 % will bring an additional advantage (let aside
fibre nonlinearities). However, narrower pulses require a larger receiver bandwidth, and this means more
noise, so that a 33 % duty cycle is near optimum.

3.3.3 Duobinary and alternate mark inversion

Duobinary (DB) and alternate mark inversion (AMI) signals are bipolar binary signals. As discussed in
Sect. 2.4.2 on Page 40 they employ the three-level signalling set {−1, 0 + 1}, where the optical phases
of the individual bits additionally depend on the bit pattern: For DB signaling, a phase change occurs
whenever there is an odd number of logical 0 between two successive logical 1, whereas for AMI the phase
changes for each logical 1 (even for adjacent logical 1), independent of the number of logical 0 in-between.
Chirp-free optical DB and AMI signals are obtained when operating the MZI in push-pull mode.

Fig. 3.31. Transmitter for duobinary signals with precoder and (a) delay-and-add circuit, or (b) low-pass filter with
bandwidth B ≈ 1/ (4T ) equal to about one quarter of the symbol rate for generating three-level signals. A logical zero
enclosed by two logical ones is not perturbed by its neigbours, because the ones interfere destructively in the bit slot of the
zero. [Modified from Fig. 2.49 and 2.50 of Ref. † on the Preface page]

The process of generating an optical DB or AMI signal comprises the following:

• Precoding of data by differential encoding. For each occurrence of a logical 0 there is a transition
of the electrical level. Logical 1 leaves the previous electrical level unchanged.

• The thus generated precoded drive voltage is added (DB, Fig. 3.31(a)) or subtracted (AMI, not
shown) from the 1 bit-delayed replica of itself. Alternatively, a low-pass filter with a bandwidth
B ≈ 1/ (4T ) equal to about one quarter of the symbol rate serves the same purpose, Fig. 3.31(b).

• This three-level signal controls the MZI modulator, which is operated in push-pull and biased at
ϑ = π/ 4.

Since the required three-level (linear) RF driver electronics are hard to implement in practice, one usually
resorts to the DB transmitter version Fig. 3.31(b), where a low-pass filter (bandwidth B ≈ 1/ (4T ) equals
a quarter of the symbol rate) processes the precoded data.

Finally, the delay-and-add or the delay-and-subtract action could be also done optically using a 1 bit
optical delay interferometer (DI). In this case, a DPSK-encoded optical signal at the DI input converts
to an inverted DB signal at the constructive output port of the DI, while AMI formatted data appear at
its destructive port. When treating the DPSK receiver, we will come back to this realization.
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3.3.4 Polarization mode shift keying

If two orthogonal polarizations (DP) carry independent information, the effective data rate can be dou-
bled when compared to transmission in a single polarization (SP). If not capacity, but sensitivity is of
primary importance, polarization mode shift keying (PMSK) in the form of polarization switching (PS)
is of interest. Particularly the PS-QPSK format is very noise resilient71. Figure 3.32 shows a PS-QPSK

Fig. 3.32. Transmitter for polarization mode shift keying (PMSK), here polarization switching (PS). The example shows
QPSK encoding (2 bit), which can appear in either of two polarizations (1 bit) named x-pol and y-pol, respectively. Thus,
3 bit are transmitted in each symbol period. The QPSK constellations illustrate the polarization switching. The central dot
represents a zero electric field and indicates that no signal is transmitted in this very polarization. [Modified from Fig. 2.59
of Ref. † on the Preface page]

transmitter along with the constellation diagrams in both polarizations. A single dot in the centre indi-
cates that this polarization has a zero field strength at this very moment. The modulation format worked
well72 for a data rate of 112 Gbit/s (symbol rate 37.3 GBd, 3 bit / symbol.

3.4 Software-defined transmitter

So far, each modulation format required a specific hardware setup. It would be more convenient, if the
same hardware could produce a variety of modulation formats. This task is solved by a software-defined
transmitter as shown in Fig. 1 on the next but one page. Inside 5 ns and without loosing any data, this
transmitter73 can switch to a different modulation format. The field-programmable gate arrays (FPGA)
generate two digital signal streams, which are then converted to analogue voltages by digital-to-analog
converters (DAC). The resulting analogue drive voltages control the phase modulator sections of the
optical IQ-modulator.

While this approach is most versatile, it would be useful to find configurations without the DAC and
their electrical drive circuitry. This would require to translate each and every binary electrical signal
directly to an optical constellation. However, this puts much more complexity to the optical modulators.

71M. Karlsson, E. Agrell: Which is the most power-efficient modulation format in optical links? Opt. Express 17 (2009)
10814–10819

72See Ref. 71 on Page 101
73Schmogrow, R.; Hillerkuss, D.; Dreschmann, M.; Huebner, M.; Winter, M.; Meyer, J.; Nebendahl, B.; Koos, C.; Becker,

J.; Freude, W.; Leuthold, J.: Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd. IEEE
Photon. Technol. Lett. 22 (2010) 1601–1603
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Real-Time Software-Defined Multiformat Transmitter
Generating 64QAM at 28 GBd

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos,
J. Becker, W. Freude, and J. Leuthold

Abstract—We demonstrate a software-defined real-time optical
multiformat transmitter. Here, eight different modulation formats
are shown. Data rate and modulation formats are defined through
software accessible look-up tables enabling format switching in the
nanosecond regime without changing the transmitter hardware.
No data are lost during the switching process. SP-64 quadrature
amplitude modulation at 28 Gbd has been generated and tested.
This allows us to generate a 336-Gb/s real-time pseudorandom bit
sequence in a dual polarization setup.

Index Terms—Advanced modulation formats, field-pro-
grammable gate array (FPGA), real-time, software defined
transmitter.

I. INTRODUCTION

T ODAY’S high-performance communication systems rely
heavily on optical transmission links. High-speed elec-

tronics is crucial to exploit the large bandwidth of optical sys-
tems. So far, optical backbone networks were operated mostly
with pulse amplitude modulation (PAM) and phase-shift keying
(PSK) modulation formats such as differential PSK (DPSK)
and differential quadrature PSK (DQPSK) [1]. However, fu-
ture optical networks will operate with multilevel coded sig-
nals such as -quadrature amplitude modulation (QAM) [2].
Advanced modulation formats promise enhanced spectral effi-
ciency at the cost of more complex transmitters and receivers.
There are several ways to implement QAM transmitters, such as
discrete electrical digital-to-analog converters (DACs) [3], op-
tical multimodulator schemes [4], all-optical DACs [5], and in-
tegrated electrical DACs in the form of arbitrary waveform gen-
erators (AWGs). Although the AWG is the most versatile so-
lution, its capability is limited due to finite memory size, and
due to the lack of real-time processing. Therefore, a more pow-
erful solution has to be found. Field-programmable gate arrays
(FPGAs) are able to handle the required amount of data, and
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yet offer the flexibility to change their functionality through
software. Combined with state-of-the-art high-speed DACs, a
software defined transmitter can be implemented. With such a
scheme, real-time Nyquist sampling for precompensating dis-
persion at 10.7 Gb/s was demonstrated [6]. Recently, we have
introduced a highly flexible and synchronous transmitter for
modulation formats as complex as 16QAM [7], providing on-
line data generation and real-time digital signal processing at
the same time.

In this letter, we present the concept and the implementation
of a software-defined transmitter that is capable of generating
binary PSK (BPSK), QPSK, 4PAM, 6PAM, 8PSK, 16QAM,
32QAM, and 64QAM at symbol rates up to 28 GBd.

II. EXPERIMENTAL SETUP

The experimental setup of the software-defined transmitter
comprises several electrical and optical components as illus-
trated in Fig. 1. An external cavity laser source provides the op-
tical carrier to be modulated in nested LiNbO complex inphase
(I)/quadrature (Q) Mach–Zehnder modulators [(MZMs) elec-
trical bandwidth 28 GHz, -phase shift voltage V].
The electrical signal is generated by two MICRAM high-speed
DACs, the outputs of which are amplified for driving the MZM.
Both DACs are supplied with an electrical clock with a max-
imum frequency of 28 GHz. A variable electrical phase shifter
aligns the two DAC outputs in phase with respect to each other.
Xilinx Virtex5 FPGAs drive the DACs, each of which providing
24 over-clocked feeding lines operating at up to 7 Gb/s each.
The over-clocking did not cause stability issues. The feeding
lines are 4 : 1 multiplexed by the DAC, resulting in an overall
symbol rate of up to 28 GBd with a resolution depth of 6 bits.
The electrical clock for the FPGA is generated by frequency
dividers located on the DAC board. Real-time computation is
performed by the FPGA devices incorporating both, signal gen-
eration, or external data accommodation and signal processing.
To emulate dual polarization (DP) signals, the modulated signal
is split, and a delay of 5.3 ns is applied to one of the paths for
decorrelation. A variable optical attenuator equalizes the optical
power in the two paths. The orthogonally polarized signals are
then combined.

To judge the quality of the transmitter, an Agilent N4391A
Optical Modulation Analyzer (OMA) receives, postprocesses,
and analyzes the constellations. Further, an Agilent Digital
Communications Analyzer (DCA) measures eye diagrams and
detects intensities. In order to receive sufficient optical power
in the two units, the signal was amplified by an erbium-doped
fiber amplifier (EDFA), and then optically bandpass filtered to
suppress the amplified spontaneous emissions generated by the

1041-1135/$26.00 © 2010 IEEE
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Fig. 1. Experimental setup and transmitter implementation. A semiconductor laser source is I/Q modulated by nested MZMs. Each arm is driven by the amplified
output of two DACs that are both clocked at 28 GHz. Two FPGAs are used to drive the DAC and perform real-time signal processing. DAC register access is
needed for synchronization. A � � � PRBS is generated on both FPGAs resulting in a four-level electrical output, which was predistorted to compensate for the
nonlinear transfer function of the modulator. The output of the I/Q modulator is polarization multiplexed, amplified, and then split. A DCA with a 50-GHz optical
input was used to measure intensity, and the N4391A OMA decoded the DP-16-QAM signal resulting in� and�.

Fig. 2. Design of the on-chip FPGA architecture. All high-speed modules
(upper path) are controlled via a central processor (�C). The “Data Module”
generates PRBS, or serves as an interface to external data ports. The “Modu-
lation Format Encoder” provides real-time data mapping and can be modified
within 5 ns to changing formats. The individually “Adjustable Bit Delay”
module is used for synchronization of the “Asynchronous FIFO Buffer” to
ensure data consistency. Eventually, data are transmitted through high-speed
GTX transceivers at up to 7 Gb/s.

EDFA. The signal is split and fed to the OMA and the DCA.
Intensities were measured for each polarization separately. The
decoded data served for bit-error ratio (BER) and error vector
magnitude (EVM) measurements. We recorded constellation
diagrams for eight different modulation formats.

III. FPGA DESIGN

A. Overall FPGA Architecture

The FPGA design can be divided into several blocks as de-
picted in Fig. 2. Real-time functional blocks are located in the
upper path and the data transport is depicted from left to right.
The high-speed modules involved in real-time data processing
are controlled by a micro-processor located on the FPGA chip.
This processor also provides a user interface as well as register
access to control the DAC.

B. Binary Data Source

The transmitter can either handle arbitrary externally fed data
sequences or generate pseudorandom bit sequences (PRBS)
internally. For simplicity, we chose to create gigabit PRBS
on-chip. We highly parallelized PRBS generators by creating
multiple bits at a single clock period using a parallel XOR gate
structure. Additionally, a multiplexing technique taking ad-
vantage of well-known PRBS properties was used to create an
arbitrary amount of bits per cycle. Several creator polynomials
have been made available ( , and ) resulting
from a minor change of the parallel XOR gate structure. The
ability to generate PRBS of arbitrary length is an advantage of
our setup over an AWG, where bits can be read from a memory
of limited length only.

C. Modulation Format Encoder

The characteristic of the transmitter is determined by a soft-
ware accessible module. A look-up table (LUT)-based structure
enables software defined encoding of the data bitstream to
arbitrary multilevel signals. Nonlinear mapping (1 Sa/symbol)
is applied in order to compensate for the nonlinear transfer
function of the I/Q MZM. Switching between different formats
is achieved by rewriting the content of the LUT. Therefore,
changing the modulation format (e.g., from QPSK to 16QAM)
requires only a single clock cycle ( 5 ns at 28 GBd). No data
at the target data rate are lost at the transmitter side during the
switching process. When changing to spectrally less efficient
formats (e.g., from 16QAM to QPSK), parts of the input bit
stream are excluded. With this capability, the transmitter can
adjust the modulation format in real-time, depending on the
required throughput and channel quality.

D. FPGA-DAC Interfacing

Successful synchronization between FPGA and DAC
modules is crucial for proper operation. All synchronization
procedures are controlled by an integrated micro-processor in
a system-on-chip approach. Individually adjustable bit delay
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Fig. 3. Received and decoded modulation formats with corresponding constellation diagrams. (a) BPSK at 28 GBd with an EVM of 5.7% exhibited no errors;
(b) QPSK at 28 GBd showed no errors with an EVM of 8.5%; (c) 4PAM at 20 GBd; (d) 6PAM at 20 GBd; (e) 8PSK at 28 GBd with an EVM of 12.5%; (f) 16QAM
at 28 GBd with an EVM of 8.6% and no errors; (g) 32QAM at 28 GBd with a resulting EVM of 9.1%; (h) 64QAM at 28GBd with an EVM of 10.1%; (i) calculated
BER values [8] and measured EVMs for QPSK, 16, 32, and 64QAM formats. FEC limits are indicated for a BER of �� and �� .

blocks, offering a delay of up to 255 bits, were applied to each
of the 24 feeding lines driving the DAC. Because of the 4 : 1
multiplexed DAC inputs, a sampling phase with 90 increment
can be selected through DAC-provided registers. Algorithms
running on the on-chip processor select the optimum sampling
phases as well as appropriate bit delays for all lines. Hence,
the synchronization process has been automated completely. A

PRBS serves as synchronization pattern ensuring an
optimal synchronization. Asynchronous first-in first-out (FIFO)
buffers guarantee data consistency before they are passed to the
multigigabit transceivers (GTX) of the FPGA.

IV. EXPERIMENTAL RESULTS

With an Agilent OMA, we measured the EVM and BER of
various formats and symbol rates. For convenience, we chose a

PRBS as data source. BER calculated according to [8]
are denoted with a prefix “ ” as opposed to measured BER.
Single-polarization 28-GBd experiments were performed first.
For BPSK and QPSK EVMs of 5.7% (BPSK), respectively,
8.1% (QPSK) were found, resulting in a BER below measure-
ment limits. 16QAM exhibited errors below a BER of 1

with an EVM of 8.6%. 8PSK EVM % , 32QAM
EVM % BER 3.5 , and 64QAM EVM

% BER 9.0 were also measured at 28 GBd.
For DP-16QAM, we found a total BER of . We de-
termined an EVM of 10.2% for one, and 10.7% for the other
polarization. The remaining formats were recorded at 20 GBd,
namely 4PAM and 6PAM.

V. CONCLUSION AND OUTLOOK

The software-defined transmitter can generate eight different
modulation formats at symbol rates up to 28 GBd. A total of 48
feeding lines between FPGAs and DACs were synchronized re-
sulting in 336 Gb/s. Dynamic format switching in only 5 ns was
performed through the processor-user interface by software ad-
justable LUTs. No hardware reconfiguration was needed for this
purpose. Manual readjustment is only required when changing

the symbol rates or when switching to ON–OFF modulation for-
mats. Advanced modulation schemes such as DP-16QAM at
224 Gb/s were successfully tested resulting in BERs well below
the forward-error correction (FEC) limit of BER .
A variety of different modulation schemes (Fig. 3) including
32QAM and 64QAM were experimentally demonstrated. When
using the described transmitter at 64QAM in a dual polarization
setup, data rates of up to 336 Gb/s on a single optical carrier can
be achieved.
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Chapter 4

Optical amplifiers

The transmission distance of a fibre-optic communications system is limited by fibre loss and dispersion.
For long-haul lightwave systems, the loss limitation has traditionally been overcome using optoelectronic
repeaters in which the optical signal is first converted into an electric current and then regenerated using a
transmitter. Such regenerators become quite complex and expensive for multichannel lightwave systems.
An alternative approach makes use of optical amplifiers, which amplify the optical signal directly without
requiring its conversion to the electric domain, see Sect. 26 on Page 7 ff.

Optical amplifiers amplify incident light through stimulated emission, the same mechanism as that
used by lasers, see Page 67 ff. Indeed, an optical amplifier is nothing but a laser without feedback. Its main
ingredient is the optical gain realized when the amplifier is pumped to achieve population inversion1.

4.1 Semiconductor amplifier

Starting from the gain relations Eq. (3.70)–(3.72) on Page 79 as discussed for the Fabry-Perot laser, we
formulate the equations for the gain of an semiconductor optical amplifier (SOA) with residual mirror
reflectivities R1,2 6= 0. A transition R1,2 → 0 leads to a true travelling-wave amplifier. If R1,2 � 1 holds
as it is the case for real devices, we talk of a near-travelling-wave amplifier (TWA). However, now the
concept of a spatial average of gain and loss must not be applied any more.

Frequently, the symbol G is used for the power gain of an amplifier2,3. However, we already associated
the character G with the gain rate, see Eq. (3.39) on Page 70. Therefore the calligraphic symbol G stands
for the amplifier power gain in the following text.

Assume an amplifying waveguide region with length L, having a propagation constant β and an
effective (modal) refractive index ne according to Eq. (2.13) on Page 18. For the single-pass power gain
Gs and the phase shift ϕ along the amplifying region we know from Eqs. (3.70)–(3.74)

Gs = exp [(Γg − αV e)L] , ϕ = βL = k0neL . (4.1)

Taking into account the multiple reflections at the mirrors, the amplification factor G is obtained using
the standard theory of a Fabry-Perot interferometer4,

G =
Gs(1−R1)(1−R2)(

1− Gs
√
R1R2

)2
+ 4Gs

√
R1R2 sin2 ϕ

, (4.2)

ϕ = βL, resonances Eq. (3.63): ϕz = ωzneL/c = mzπ , mz= 1, 2, 3, . . .

1See Ref. 17 on Page 6
2See Ref. 17 on Page 6. Sect. 8.2. p. 368 ff.
3See Ref. 3 on Page 49, Sect. 5.5. p. 209 ff.
4See Ref. 6, 7, 8 on Pages 49 and 49
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As is evident from Eq. (4.2), G peaks whenever the frequency f = ω/(2π) coincides with one of the
cavity-resonance frequencies fz and drops sharply in between them. Because spontaneous emission was
disregarded, we find infinite gain for Gs

√
R1R2 = 1 at the resonance points ϕz = mzπ spaced apart

by the free spectral range ∆fz = c/(2negL), see Eq. (3.65) on Page 78 and Fig. 3.24 on Page 91. The
usable gain, however, is limited by the existence of spontaneous emission in the region of the lasing
threshold, Eq. (3.83) on Page 82. The power gain G depends on the field confinement factor Γ , Eq. (4.1)
and following remarks on Page 105, and on the carrier concentration nT , Eq. (3.77) on Page 80. Therefore,
G changes with the polarization of the field (the gain for TE polarization is about 5 . . . 10 dB larger in
bulk amplifiers than for TM polarization), with the injection current I via nT , Eq. (3.90) on Page 84,
and, because of gain saturation, it varies also with the power level of the input signal. Further, because
of amplitude-phase coupling, Eq. (3.116) on Page 90, we find a signal-dependent phase shift of the optical
output (a chirp of its frequency). The signal power dependency and/or the chirp can be exploited for
frequency conversion5,6,7,8,9.

At resonance and anti-resonance we find the maximum and minimum gain factors

Gmax =
Gs(1−R1)(1−R2)

(1− Gs
√
R1R2)2

, Gmin =
Gs(1−R1)(1−R2)

(1 + Gs
√
R1R2)2

. (4.3)

From the ripple of the gain curve the single-pass gain Gs
√
R1R2 can be derived10,11,12,

Gs
√
R1R2 =

√
Gmax/Gmin − 1√
Gmax/Gmin + 1

. (4.4)

For a 3 dB ripple we have Gs
√
R1R2 = 0.17, so for a single-pass gain 10 lg Gs = 20 dB the mean mirror

reflection factor must be
√
R1R2 < 0.17×10−2. Variations in the single-pass gain Gs have the more effect

the larger
√
R1R2 is.

4.1.1 Fabry-Perot amplifier

The bandwidth of a Fabry-Perot amplifier (FPA) is determined by the sharpness of the cavity resonance
at fz. The spectral distance between the half-maximum points of the gain G inside one single Fabry-Perot
mode can be computed from Eqs. (4.2), (4.3),

BG =
c

πnegL
arcsin

(
1− Gs

√
R1R2√

4Gs
√
R1R2

)
=

c

πnegL
arcsin

√
(1−R1)(1−R2)

4Gmax

√
R1R2

. (4.5)

Measuring BG is an alternative method to determine Gs
√
R1R2 . Usually, the arcsin-function can be

approximated by its argument. For a Fabry-Perot amplifier the maximum power gain Gmax changes with

5Nielsen, M. L.; Nord, M.; Petersen, M. N.; Dagens, B.; Labrousse, A.; Brenot, R.; Martin, B.; Squedin, S.; Renaud, M.:
40 Gbit/s standard-mode wavelength conversion in all-active MZI with very fast response. Electron. Lett. 39 (2003) 20th
Feb., No. 4

6Nielsen, M. L.; Lavigne, B.; Dagens, B.: Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using band-
pass filtering. Electron. Lett. 39 (2003) 4th Sep., No. 18

7Leuthold, J.; Ryf, R.; Maywar, D. N.; Cabot, S.; Jaques, J.; Patel, S. S.: Nonblocking all-optical cross connect based on
regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16 800 km. IEEE J. Lightw.
Technol. 21 (2003) 2863–2870

8Leuthold, J.; Marom, D. M.; Cabot, S.; Jaques, J. J.; Ryf, R.; Giles, C. R.: All-optical wavelength conversion using a
pulse reformatting optical filter. IEEE J. Lightw. Technol. 22 (2004) 186–192

9Leuthold, J.; Möller, L.; Jaques, J.; Cabot, D.; Zhang, L.; Bernasconi, P.; Cappuzzo, M.; Gomez, L.; Laskowski, E.;
Chen, E.; Wong-Foy, A.; Griffin, A.: 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative
properties. Electron. Lett. 40 (2004) 29th Apr., No. 9

10Hakki, B. W.; Paoli, T. L.: Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46 (1975)
1299–1306

11Guo, Wei-Hua; Huang, Yong-Zhen; Han, Chun-Lin; Yu, Li-Juan: Measurement of gain spectrum for Fabry–Pérot semi-
conductor lasers by the Fourier transform method with a deconvolution process. IEEE J. Quantum Electron. 39 (2003)
716–721

12Fazludeen, R.; Samit Barai; Prasant Kumar Pattnaik; Srinivas, T.; Selvarajan, A.: A novel technique to measure the
propagation loss of integrated optical waveguides. IEEE Photon. Technol. Lett. 17 (2005) 360–362
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the operating current, so the product of bandwidth BG in mode mz and maximum amplitude gain
√
Gmax

remains constant,

BG
√
Gmax =

c

2πnegL

√
(1−R1)(1−R2)√

R1R2

=
∆fz
π

√
(1−R1)(1−R2)√

R1R2

= const . (4.6)

As before, neighbouring modes are spectrally separated by ∆fz, Eq. (3.65) on Page 78. For semiconductor
lasers without antireflection coated facets the power reflection factors are R1 = R2 = 0.32. If the crystal
length is L = 300µm and the effective group index neg = 3.5, a bandwidth-gain product of BG

√
Gmax =

55 GHz results. Such a small bandwidth makes Fabry-Perot amplifiers unsuitable for most lightwave
system applications.

4.1.2 Travelling-wave amplifier

Antireflection coatings are necessary for travelling-wave amplifiers (TWA). Minimum reflectivities of√
R1R2 = 10−5 are achieved, but considerable technological effort is required. For this reason, alternative

techniques help reducing the reflection feedback. In one method13, the active-region stripe is tilted from
the facet normal. If the vertical bars | denote the facets and the dash — or the slash � represent the
stripe, the conventional amplifier is characterized by |—|, while the angled-facet or tilted-strip structure
appears like |�|. In practice, tilted stripes with antireflection-coated facets have effective reflectivities
down to R1,2 ≈ 10−4. The 3 dB bandwidth of typical amplifiers is ∆λH = 70 nm near λ = 1.5µm. This
corresponds to a frequency bandwidth of ∆fH = 9.3 THz and compares well with the rough estimate
∆fH = 12.1 THz in Eq. (3.61) on Page 76. Gain values of 28 dB with a residual ripple < 3 dB and a
polarization dependence of the gain < 1 dB are achievable.

Fig. 4.1. Near-travelling-wave amplifier. Schematic of the spectral output power density P2a/∆F of amplified spontaneous
emission as transmitted through mirror R2 for varying injection currents I1 < I2 < I3. The frequencies of maximum gain
and maximum spontaneous emission are denoted as find and fsp for an operating current I = I3.

Figure 4.1 displays the schematic spectral output power density P2a/∆f at the exit facet of a near-
travelling-wave amplifier. Because of bandfilling at larger injection currents the quasi Fermi levels move
deeper into the bands, and the frequencies of maximum spontaneous emission fsp and of maximum
induced amplification find shift to higher frequencies. This can be also deduced from the diagrams Fig.
3.14 on Page 71, where the point of zero gain x0 = (WFn −WFp −WG)/(kT0) depends on the difference
WFn −WFp of the quasi Fermi levels. As to be seen in Fig. 3.14, the relation find < fsp holds.

13Zah, C. E.; Osinski, J. S.; Caneau, C.; Menocal, S. G.; Reith, L. A.; Salzman, J.; Shokoohi, F. K.; Lee, T. P.: Electron.
Lett. 23 (1987) 990
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4.2 Doped fibre amplifier

An alternative to current-pumped semiconductor laser amplifiers are optically pumped E r3+-doped glass
f ibre amplifiers (EDFA). The optical bandwidth BO is in the order BOA = 4 THz for an ordinary EDFA.
They are commercially available at λS = 1.55µm (fS = 193 THz) in the S band (short-wavelength band,
λ ≤ 1.528µm), C band (conventional or central band, 1.528µm ≤ λ ≤ 1 563µm, ∆λ = 35 nm), and in
the L band (long-wavelength band, 1.563µm ≤ λ ≤ 1.606µm, ∆λ = 43 nm). Combining a C and an S
band amplifier14 the following record results were achieved, Fig. 4.2:

Fig. 4.2. Er-doped optical ultra-broadband amplifier14 (ECOC’1998)

• With 84.3 nm of bandwidth this ultra wide band amplifier can accommodate 100 WDM (wavelength
d ivision multiplexing) channels with the proposed ITU (I nternational Telecommunication U nion)
standard channel spacing of 100 GHz (0.8 nm @ λS = 1.55µm), or 200 WDM channels with 50 GHz
(0.4 nm @ λS = 1.55µm). There is enough power to support 200 WDM channels. On the other
hand, for a given number of WDM channels, this amplifier can be used to allow for a wider channel
spacing which may be needed in optical networks with multiple cascaded filters.

• UWB EDFA with a two-section, split band structure. Maximum operating gain is 25 dB and the
noise figure is about 6 dB. The output power is very high at 25 dBm, which is required for large
numbers of WDM channels. The split bands allow independent optimization of each band for
dispersion compensation and span loss variations. The present EDFA, based on field tested erbium-
doped silica fiber technology, can be used in Tbit/s capacity DWDM (dense WDM) systems and
networks.

• Bandwidth ∆λ = 84 nm (∆f = 10 THz @ λS = 1.563µm)

• Noise figure F = 6 dB, power gain Gs = (25± 1.5) dB, output power 25 dBm =̂ 320 mW

• 100 channels @ 10 Gbit/s @ 400 km, i. e., a length-bandwidth product of 400 Tbit/s · km (!). The
amplifier bandwidth BOA centred at the optical frequency fS is usually much larger than the signal
bandwidth, B � BOA � fS . With passive optical filters the optical bandwidth can be varied in
the range 100 GHz ≤ BO ≤ BOA.

14Sun, Y.; Sulhoff, J. W.; Srivastava, A. K.; Abramov, A.; Strasser, T. A.; Wysocki, P. F.; Pedrazzani, J. R.; Judkins,
J. B.; Espindola, R. P.; Wolf, C.; Zyskind, J. L.; Vengsarkar, A. M.; Zhou, J.: A gain-flattened ultra wide band EDFA for
high capacity WDM optical communications system. Proc. 24th Europ. Conf. Opt. Commun. Madrid (ECOC 1998), 20.–24.
Sept. 1998. Vol. 1 pp. 53–54 (Lucent Technologies — Bell Laboratories, Holmdel, NJ)



Chapter 5

Optical receivers

The role of an optical receiver is to convert the optical signal back into electrical form, and to recover
data transmitted through the lightwave system. Its main component is a photodetector that converts —
with a probability η — the received photons to electrons through the photoelectric effect. Because of its
speed and sensitivity photoconductive detectors in the form of reverse-biased semiconductor pn-junctions
(photodiodes, PD) are commonly used for lightwave systems. Before and after the photodetector there
could be additional optical and electronic circuitry, respectively, which will be also discussed in due course.
First, we concentrate on the photodiode.

5.1 Pin photodiode

The following sections focus on the pin-photodiode. With avalanche photod iodes (APD) the responsivity
can be increased by impact ionization at the cost of additional avalanche noise. However, the combination
of optical amplifiers and pin-photodiodes yields a better sensitivity and linearity than the use of an APD.

5.1.1 Basic relations

A reverse-biased pn-junction consists of a region, known as the depletion or space-charge region, that is
essentially devoid of free charge carriers and where a large built-in electric field (Eq. (3.30)) opposes flow of
electrons from the n-side to the p-side and of holes from the p-side to the n-side. When such a pn-junction
is illuminated with light, electron-hole pairs are created through absorption of signal photons with energies
hfs > WG larger than the bandgap energy WG of the basic semiconductor material. The probability that
a photon generates an electron-hole pair is the quantum efficiency η. Because of the large built-in electric
field, electrons and holes generated inside the depletion region accelerate in opposite directions and drift
to the regions where they are majority carriers1,2.

A limiting factor for the bandwidth of pn-photodiodes is the presence of a diffusive component in the
photocurrent. Electrons generated in the p-region have to diffuse to the depletion-region boundary before
they can drift to the n-side; similarly, holes generated in the n-region must diffuse to the depletion-region
boundary. Diffusion is an inherently slow process. Carriers take 1 ns or longer to diffuse over a distance
of about 1µm. In practice, the diffusion contribution depends on the bit rate and becomes negligible by
decreasing the widths of the p and n-regions and increasing the depletion-region width so that most of the
incident optical power is absorbed inside it. This is the approach adopted for pin-photodiodes, discussed
next3.

A simple way to increase the depletion-region width is to insert a layer of undoped (or lightly doped)
semiconductor material between the pn-junction. Since the middle layer consists of (nearly) intrinsic

1See Ref. 17 on Page 6, Sect. 4.2.1 p. 141
2See Ref. 3 on Page 49, Chapter 7 p. 253 ff.
3See Ref. 17 on Page 6, Sect. 4.2.1 p. 143
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Fig. 5.1. Schematic of a pin-diode. BG contact region (= Bahngebiet), DZ diffusion zone, RLZ space-charge (or depletion)
region (= Raumladungszone). Pe light power incident from region external of semiconductor, RP power reflection factor of
the semiconductor surface, Pi(x) light power inside the semiconductor, α light power attenuation constant, dn (dp) length of
n-doped (p-doped) semiconductor, wA length of intrinsic absorption zone, E(x) x-component of electric bias field. Halbleiter
= semiconductor

material, such a structure is referred to as the pin-photodiode4. Figure 5.1 shows the device structure
(not drawn to scale) together with the electric-field distribution inside it under reverse-bias operation.
Because of its intrinsic nature, the middle i-layer offers a high resistance, and most of the voltage drop
occurs across it. As a result, a large electric field exists in the i-layer. In essence, the depletion region
extends throughout the i-region −wA ≤ x ≤ 0, and the width wA of this absorption zone can be
controlled by changing the middle-layer thickness. The main difference from the pn-photodiode is that
the drift component of the photocurrent dominates over the diffusion component simply because most of
the incident power is absorbed inside the i-region (absorption region) of the pin-photodiode.

The external light power Pe is incident perpendicularly to the PD surface and partially reflected with
a power reflection factor RP , see Eq. (3.1) on Page 50. The power inside the semiconductor is attenuated
exponentially, see Eq. (1.2) on Page 5. The absorption length corresponding to the reciprocal attenuation
constant α for direct semiconductors (e. g., GaAs) is in the order 1/α = 1µm, for indirect semiconductors
(e. g., Si) it is 1/α = 10 . . . 20µm, see also Fig. 5.4 on Page 114.

A high-speed operation requires small carrier transit times in the depletion region, i. e., small wA.
However, because the depletion-layer capacitance increases with decreasing wA, an optimum absorption
layer width results, and an optimum absorbed power Pe[1− exp(−αwA)] for RP = 0, dn = dp = 0 has to
be found. Thus, high speed (small wA) means low quantum efficiency and low sensitivity.

To avoid this dilemma, an optical waveguide structure can be used to which the optical signal is edge-
coupled, see Fig. 5.7 on Page 119. When the power Pi(x) inside the absorption region changes significantly
with x, then the light should be radiated into the direction of the faster moving charge carriers because
in this case a larger percentage of the carriers leaves the absorption region faster. In Fig. 5.1 the holes are
assumed to drift at a higher velocity than the electrons, vp > vn. This rule is not necessarily obeyed if
discontinuities in the band edges of heterostructures inhibit electrons or holes from leaving the i-region.

Short-circuit photocurrent

We assume a semiconductor without external magnetic field and neglect the magnetic fields associated
with flowing currents. The basic equations5 for semiconductor-device operation can be classified in three

4See Ref. 17 on Page 6, Sect. 4.2.2 p. 144
5Sze, S. M.: Physics of semiconductor devices. New York: John Wiley & Sons 1985. Chapter 3 p. 70
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groups: Continuity equations, current-density or transport equations, and Maxwell’s equations. For the
continuity equations we need the electron and hole concentrations nT and p, the electron and hole (con-

vection) current densities ~Jn and ~Jp, the generation (gn and gp) and the recombination rates (rn and rp)
of electrons and holes,

∂p/∂t+ div ~Jp/e = gp − rp ,

∂nT /∂t− div ~Jn/e = gn − rn .
(5.1)

The current-density or transport equations consist of the drift component caused by the field and the
diffusion component, which in turn is determined by the carrier concentration gradient. Parameters are
the drift velocities ~vn and ~vp, the diffusion constants Dn and Dp, the mobilities µn and µp for electrons

and holes, and the electric field ~E,

~Jp = ep~vp − eDp grad p, ~vp = µp ~E,

~Jn = −enT~vn + eDn grad nT , ~vn = −µn ~E,
(5.2)

It is the Poisson equation which determines important properties of the pn-junction depletion layer. Pois-
son’s equation connects the electric field ~E, the total electric charge density ρ, the dielectric displacement
~D, and the permittivity ε,

div ~D = ρ, ~D = ε ~E. (5.3)

The total current density is source-free,

div

(
~Jn + ~Jp +

∂ ~D

∂t

)
= 0. (5.4)

Equations (5.1)–(5.4) are applied to an i-semiconductor Fig. 5.2 for the one-dimensional case. The electric
field due to the externally connected voltage is so high that electrons and holes drift with their saturation
velocities vn and vp. The recombination rates rn and rp are negligibly small because the carrier lifetime is
much larger than the drift time in the absorption zone −wA ≤ x ≤ 0. Diffusion currents can be neglected
compared to drift currents. Photogeneration dominates the carrier generation processes, gp = gn = g.

Fig. 5.2. i-layer of a pin-photodiode (one-dimensional case, cross-section area F ). Saturation drift velocities vn > 0 and
vp > 0 for electrons and holes, incident external optical power Pe(t), total conduction current i(t), open-circuit voltage UB
of a battery with an internal resistance of zero

Introducing convection and conduction currents i instead of current densities J (cross-section area F ) we
find from Eq. (5.1)–(5.4)

1

vp

∂ip
∂t

+
∂ip
∂x

= eFg , ip = Fepvp ,

1

vn

∂in
∂t
− ∂in
∂x

= eFg , in = FenT vn ,

(5.5)



112 CHAPTER 5. OPTICAL RECEIVERS

and

ε
∂E

∂x
= e(p− nT ),

∂

∂x

(
in + ip + Fε

∂E

∂t

)
= 0 . (5.6)

The total time-dependent conduction current is

i(t) = in(x, t) + ip(x, t) + Fε
∂E(x, t)

∂t
. (5.7)

Because of

0∫
−wA

E(x, t) dx = UB = const →
0∫

−wA

∂E(x, t)

∂t
dx =

dUB
dt

= 0 , (5.8)

we find the total conduction current in the external circuit (i. e., the external short-circuit current, dUB =
0) as an average of the sum of the carrier convection currents in the drift region −wA ≤ x ≤ 0,

i(t) =
1

wA

0∫
−wA

[ in(x, t) + ip(x, t) ] dx . (5.9)

The carrier transit times τn, τp are defined by

wA = vnτn = vpτp . (5.10)

The total number of electrons and holes in the semiconductor are

Nn(t) = F

0∫
−wA

nT (x, t) dx , Np(t) = F

0∫
−wA

p(x, t) dx . (5.11)

From Eqs. (5.9)–(5.11) we calculate with the help of Eq. (5.5) (ip = Fepvp, in = FenT vn) the total
conduction current,

i(t) =
e

τn
Nn(t) +

e

τp
Np(t). (5.12)

If the irradiated n-region is much shorter than the absorption length (i. e., αdn → 0 in Fig. 5.1), the light
power in the i-region Pi(x, t) reads

Pi(x, t) = Pe(t) (1−RP ) e−α(x+wA) . (5.13)

Any light propagation times are neglected. Pe, Pi are classical optical powers averaged over a few optical
cycles. The power fraction which is absorbed inside the i-zone represents the quantum efficiency η of the
photodiode,

η =
Pi(−wA, t)− Pi(0, t)

Pe(t)
= (1−RP )

(
1− e−αwA

)
. (5.14)

The mean generation rate of electron-hole pairs equals the mean absorption rate of photons, i. e., the
absorbed power per quantum energy hfe. Because photodiodes cannot emit optical power, no second
harmonic light frequency is generated as it is common for classical microwave detectors. The generation
rate g (unit cm−3 s−1) is

g(x, t) = − 1

Fhfe

∂Pi(x, t)

∂x
=
αPi(x, t)

Fhfe
. (5.15)

With Eq. (5.13) (substitute Pi(x, t)) and Eq. (5.14) (substitute (1−RP )) we find

eFg(x, t) =
ηe

hfe
Pe(t)

α e−α(x+wA)

1− e−αwA
. (5.16)
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Equivalent electrical circuit

For d / dt = 0 with Pe(t) ≡ Pe = constt the Eqs. (5.5), (5.16) for the static short-circuit current i(t) ≡ i =
constt can be easily solved. We integrate Eq. (5.5), (5.16) with the notation f(x, t) ≡ f(x) for space and
time dependent functions f in the stationary case. Further, we observe that in Figs. 5.1, 5.2 the minority
current injection can be neglected, ip(−wA) = 0, in(0) = 0,

i = ip(0) = in(−wA) =

0∫
−wA

eFg(x) dx =
ηe

hfe
Pe , i = SPe , S =

ηe

hfe
,

S

A /W
= 0.806 η

λe
µm

. (5.17)

The quantity S is called photodetector sensitivity (responsivity). The absorbed power is ηPe and corre-
sponds to a photon absorption rate of ηPe/(hfe). Each absorbed photon generates an electron-hole pair
leading to the transport of one elementary charge e through the external circuit. The rate of generated
charges i/e equals the photon absorption rate ηPe/(hfe).

The sensitivity of a photodiode increases with the wavelength λe simply because more photons are
present for the same optical power. Such a linear dependence on λe is not expected to continue forever,
since eventually the photon energy hfe becomes smaller than the bandgap energy WG. The quantum
efficiency η then drops to zero6. The dependence of η on λe enters through the absorption coefficient α,
Eq. (5.14) and Fig. 5.4 on Page 114.

For the time-dependent case we substitute Eq. (5.16) in Eq. (5.5). The current i(t) as calculated
from Eq. (5.9) or Eq. (5.12) represents the short-circuit current which feeds the equivalent circuit of the
electrical embedding network of the photodiode Fig. 5.3. The Fourier transforms of i(t), ia(t) are denoted

Fig. 5.3. Equivalent electrical circuit of a photodiode. Pe incident external optical power, Csp depletion-layer capacity, RS
series resistance, LS series inductance, Ra load resistance

as I(f), Ia(f). The transfer function HS(f) from the photodiode to the load resistance Ra reads

HS(f) =
Ia(f)

I(f)
=

ω2
r

(jω)2 + 2γr(jω) + ω2
r

,

ω2
r =

1

LSCsp
, 2γr =

RS +Ra
LS

.

(5.18)

The transfer function HS(f) has the same structure as the small-signal transfer function of the current-
modulated laser diode Typical values of the circuit elements are: Csp = 0.04 . . . 0.2 pF, RS = 10 . . . 50 Ω,
LS = 0.15 . . . 0.5 nH, Ra = 50 Ω. The reverse diode voltage depends on the material and on the width if
the depletion-layer and is in the order of a few volts. The depletion-layer capacitance Csp can be calculated
with the formula for a parallel-plate capacitor, Eq. (5.39). Relative dielectric constants εr are specified in
Sect. 5.1.2. The cross-sectional area F of a photodiode is usually circular having a diameter in the order
7 . . . 200µm, typically in the range 10 . . . 80µm.

5.1.2 Materials

Materials commonly used to make photodiodes can be elemental or compound semiconductors. From the
elemental semiconductors Ge (εr = 16) is suitable in the long-wavelength region (direct semiconductor

6See Ref. 17 on Page 6. Sect. 4.1 p. 139
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for λ < 1.55µm, indirect for λ < 1.85µm), while Si exhibits excellent properties in the short-wavelength
and visible range (εr = 11.7, direct for λ < 0.36µm, indirect for λ < 1.1µm).

Compound semiconductors are common in the long-wavelength domain. InP substrates (transparent
for λ > 0.92µm, εr = 12.35) with an lattice-matched In0.53Ga0.47As absorption layer are used (in short
InGaAs, good for λ < 1.65µm, εr = 13.6).

The bandgap difference |∆WG| = 0.6 eV (InP: WG = 1.35 eV; InGaAs: WG = 0.75 eV) leads to
discontinuities for the CB edge of |∆WL| = 0.2 eV and for the VB edge of |∆WV | = 0.4 eV. For an
isotype nN-junction between weakly n-doped InGaAs and n-doped InP the built-in voltage of typically
UD = 0.22 eV has to be added. Thus, the CB edges of InGaAs and InP on both sides of the contact have
nearly the same energy levels. The remaining CB spike is narrow, and electrons may easily penetrate the
barrier by tunneling. However, VB holes injected from InGaAs into InP see a VB potential barrier which
increased to |∆WV |+ UD = 0.62 eV.

Fig. 5.4. Wavelength dependence of the absorption constant α (penetration depth 1/α) for several semiconductor materials

Figure 5.4 shows the wavelength dependence of the absorption constant α and of the penetration
depth 1/α for Ge, Si, GaAs and (In0.7Ga0.3)(As0.64P0.36); these materials are commonly used to make
photodiodes for lightwave systems. Some special values for InGaAs are: α = 0.68µm−1 at λ = 1.55µm,
α = 1.16µm−1 at λ = 1.36µm, α = 2.15µm−1 at λ = 1.06µm.

5.1.3 Time and frequency response

The response time of a pin-photodiode is determined by the speed with which it responds to variations
of the incident optical power. The absorption layer of a pin-photodiode is displayed in Fig. 5.5. Pe(t) is
the incident external light power. The quantum efficiency η was defined in Eq. (5.14). The internal light
power dependence Pi(x, t) in the i-region is given by Eq. (5.13).

If we set formally (irrespective of the physical units) Pe(t) = δ(t), then the short-circuit “current” i(t)
computed from Eq. (5.9), (5.12) is denoted as impulse response hP (t; pin) (unit A /Ws; the subscript P
relates the impulse response to an impulse of the optical power). We substitute the generation term eFg
from Eq. (5.16) using Pe(t) = δ(t) into Eq. (5.5), and integrate over the small interval −∆t ≤ t ≤ ∆t. The

currents before the power impulse are zero, and
∫ +∆t

−∆t
∂ip
∂x dt = ∂

∂x

∫ +∆t

−∆t ip dt → 0 for ∆t → 0 because
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Fig. 5.5. Absorption layer of a pin-photodiode. Pe incicent external light power, RP power reflection coefficient, i(t) external
short-circuit current, Pi internal optical power; ip, in convection currents of electrons and holes; vp, vn saturation drift
velocities, wA length of absorption region

ip(x, t) has no singularity,

1

vp

+∆t∫
−∆t

∂ip
∂t

dt+

+∆t∫
−∆t

∂ip
∂x

dt =
ηe

hfe

α e−α(x+wA)

1− e−αwA

+∆t∫
−∆t

δ(t) dt for ∆t→ 0 , (5.19)

1

vp

(
ip(x,+0)− ip(x,−0)︸ ︷︷ ︸

= 0

)
+

∂

∂x

∫ +∆t

−∆t
ip(x, t) dt︸ ︷︷ ︸

= 0 for ∆t→ 0

=
ηe

hfe

α e−α(x+wA)

1− e−αwA

For ∆t→ 0 we find as an initial condition the convection “currents” at t = +0,

1

vp
ip(x,+0) =

1

vn
in(x,+0) =

ηe

hfe

α e−α(x+wA)

1− e−αwA
. (5.20)

For the δ-excitation g(x, t > 0) = 0 is valid. The homogeneous differential equations (5.5) are solved
by arbitrary functions ip(x, t) = ip(x − vpt), in(x, t) = in(x + vnt) which fulfill the initial conditions
Eq. (5.20). These initial carrier distributions drift to the right and to the left with the saturation velocities
vp and vn, respectively. With the Heaviside function H(z) and the carrier transit times τn, τp defined by
wA = vpτp = vnτn we calculate

ip(x, t)

in(x, t)

}
=

ηe

hfe

α e−αwA

1− e−αwA

{
vp e−α(x−vpt) ×
vn e−α(x+vnt) ×

×
[
H(t)−H(t− τp)

][
H(x− vpt+ wA)−H(x)

]
,

×
[
H(t)−H(t− τn)

][
H(x+ wA)−H(x+ vnt)

]
.

(5.21)

Substituting these “currents” into Eq. (5.9), i(t) = 1
wA

∫ 0

−wA [ in(x, t) + ip(x, t) ] dx, we find for the impulse
response

hP (t; pin) =
ηe

hfe

1

1− e−αwA

{
1− e−α(wA−vpt)

τp

[
H(t)−H(t− τp)

]
+

+
e−αvnt− e−αwA

τn

[
H(t)−H(t− τn)

]}
,

+∞∫
−∞

hP (t; pin) dt =
ηe

hfe
.

(5.22)

The total “charge” transported in an external circuit, originating from an optical “power” Pe(t) = δ(t),
is ηe/ (hfe). The corresponding absorbed light “energy” is η. Thus, η/(hfe) represents the absorbed
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photon “number”. Each absorbed photon generates an electron-hole pair leading to the transport of an
elementary charge e through the external circuit.

The Fourier transform HP (f ; pin) of the impulse response hP (t; pin) is the transfer function of the
pin-photodiode,

HP (f ; pin) =
ηe

hfe

1

1− e−αwA

[
1− e− jωτp

jωτp
+

e−αwA − e− jωτp

αwA − jωτp
+

+
1− e−αwA e− jωτn

αwA + jωτn
− e−αwA

1− e− jωτn

jωτn

]
.

(5.23)

Thus, the external short-circuit current i(t; pin) and its frequency response I(f ; pin) for an arbitrary time
dependent illumination Pe(t) are

i(t; pin) =
+∞∫
−∞

Pe(t
′)hP (t− t′; pin) dt′,

I(f ; pin) = P̆e(f)HP (f ; pin)

(5.24)

P̆e(f) is the Fourier transform of Pe(t). According to Fig. 5.3 and Eq. (5.18) the transfer function HS(f)
from the photodiode to the load resistance is

Ia(f) = P̆e(f)HP (f ; pin)HS(f). (5.25)

Strong absorption In the limiting case of strong absorption αwA →∞ all the light power is absorbed
inside an infinitely thin layer at x = −wA. The quantum efficiency η (Eq. (5.14)) simplifies to

η = 1−RP , (αwA →∞) (5.26)

With an antireflection coating η → 1 is achievable. The initial convection currents Eq. (5.20) valid for
−wA ≤ x ≤ 0 are

1

vp
ip(x,+0) =

1

vn
in(x,+0) =

ηe

hfe

α e−α(x+wA)

1− e−αwA
[H(x+ wA)−H(x)] . (5.27)

With limα→∞
[
α e−α(x−vpt+wA)H(x−vpt+wA)

]
= δ(x−vpt+wA) we calculate7 the convection “current”

response ip(x, t) from Eq. (5.21),

ip(x, t) =
ηe

hfe

α e−αwA

1− e−αwA
vp e−α(x−vpt)

[
H(t)−H(t− τp)

][
H(x− vpt+ wA)−H(x)

]
=

ηe

hfe

vp
1− e−αwA

[
H(t)−H(t− τp)

]
e−α(x−vpt+wA)

[
H(x− vpt+ wA)−H(x)

]
,

7The meaning of α e−α(x) H(x) may be seen through an integration by parts,
∫
uv′ dx = uv −

∫
u′v dx,

lim
α→∞

α

+∞∫
−∞

e−αxH(x)Φ(x) dx = lim
α→∞

α

+∞∫
0

Φ(x) e−αx dx

= lim
α→∞

α

Φ(x)
−1

α
e−αx

∣∣∣∣+∞
0

−
+∞∫
0

Φ′(x)
−1

α
e−αx dx


= lim
α→∞

α

Φ(0)
1

α
− Φ′(0)

(
−1

α

)2

+

+∞∫
0

Φ′′(x)

(
−1

α

)2

e−αx dx


= Φ(0) =

+∞∫
−∞

δ(x)Φ(x) dx  δ(x) = lim
α→∞

[
α e−αxH(x)

]
. (5.28)

Thus, the initial conditions for the convection currents (i. e., the carrier concentrations) in the region −wA ≤ x ≤ 0 are in
proportion to δ(x+ wA).
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which finally leads to

ip(x, t) =
ηe

hfe

vp
1− e−αwA

[
H(t)−H(t− τp)

]
(5.29)

×
[
α e−α(x−vpt+wA) H(x− vpt+ wA)︸ ︷︷ ︸

=δ(x−vpt+wA) for α→∞

−α e−αxH(x) eα(vpt−wA)︸ ︷︷ ︸
=0 for α→∞

]
= {α→∞} =

ηe

hfe
vp

[
H(t)−H(t− τp)

]
δ(x− vpt+ wA).

An analogous result can be found for in(x, t). With Eq. (5.9) the total external current is i(t) = 1
wA
×∫ 0

−wA

[
in(x, t)+ip(x, t)

]
dx. For the hole current,

∫ 0

−wA δ(x−vpt+wA) dx =
∫ −vpt+wA
−vpt δ(ξ) dξ = {t = 0} =∫ +wA

−0
δ(ξ) dξ = 1 holds. The electron current contribution disappears for t > 0. From Eqs. (5.22), (5.23)

we calculate the external current impulse and frequency responses

hP (t; pin) =


ηe

hfe

(
1

τp
+

1

τn

)
(t = 0),

ηe

hfeτp
[H(t)−H(t− τp) ] (t > 0),

HP (f ; pin) =
ηe

hfe
e− jωτp/2

sin(ωτp/2)

ωτp/2
,


(αwA →∞). (5.30)

Weak absorption For the limiting case of weak absorption αwA → 0 the responses are

hP (t; pin) =
ηe

hfe

{
1− t/τp
τp

[H(t)−H(t− τp) ] +

+
1− t/τn
τn

[H(t)−H(t− τn) ]

}
,

HP (f ; pin) =
ηe

jωτphfe

[
1− e− jωτp/2

sin(ωτp/2)

ωτp/2

]
+

+
ηe

jωτnhfe

[
1− e− jωτn/2

sin(ωτn/2)

ωτn/2

]
.


(αwA → 0). (5.31)

Figure 5.6 shows the external current impulse responses of a pin-photodiode for the limiting cases of
strong (αwA →∞) and weak absorption (αwA → 0) assuming vp = vn = wA/τ .

Fig. 5.6. Transit-time limited impulse responses of a pin-photodiode for vp = vn (τp = τn = τ) and the cases of strong
absorption (αwA → ∞, in practice αwA ≥ 1000) and weak absorption (αwA → 0, in practice αwA ≤ 1). Intermediate-
absorption graphs for αwA = 100 and αwA = 10

5.1.4 Cutoff frequency, quantum efficiency and responsivity

The transfer function HS(f) from the photodiode to the load resistance Ra has the same structure as the
small-signal transfer function of the current-modulated laser diode. We are only interested in the short-
circuit current I(f ; pin) originating from the alternating part of the sinusoidal light power modulation,
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Pe(t) = P0 + P1 cos(ωt) (P0 ≥ P1 = constt) (5.32)

Again, the limiting cases of strong (Eq. (5.30)) and weak absorption (Eq. (5.31), τn = τp = τ) are regarded,

I(f ; pin)

I(0; pin)
= e− jωτp/2

sin(ωτp/2)

ωτp/2
, (αwA →∞),

I(f ; pin)

I(0; pin)
=

1

jωτ/2

[
1− e− jωτ/2 sin(ωτ/2)

ωτ/2

]
, (αwA → 0).

(5.33)

Transit-time cutoff frequency The transit-time limited 3-dB cutoff frequency is computed from∣∣∣∣I(f3 dB; pin)

I(0; pin)

∣∣∣∣ =
1√
2

(5.34)

resulting in

f3 dB =

{
0.44/τp (αwA →∞),

0.55/τ (αwA → 0, τn = τp = τ).
(5.35)

Quantum efficiency For weak absorption αwA → 0 we see from Eq. (5.14) that the quantum efficiency
is η = (1 − RP )αwA (compare η = 1 − RP for αwA → ∞, Eq. (5.26)), thus the product of quantum
efficiency and 3-dB cutoff frequency is

η = (1−RP ) (1− e−αwA) (Eq. (5.14)),

ηf3 dB = 0.55 (1−RP )αv , (αwA → 0).
(5.36)

Assuming RP = 0 the efficiency-bandwidth products depends only on the material parameters α (absorp-
tion constant) and v (saturation velocity of carriers). With the InGaAs data of Sect. 5.1.2 at λ = 1.55µm
(α = 0.68µm−1, v = (vn + vp)/2 = 56.5µm / ns) an efficiency-bandwidth product ηf3 dB = 21 GHz
results, for λ = 1.36µm (α = 1.16µm−1, v = 56.5µm / ns) it is ηf3 dB = 36 GHz.

Edge-coupling Better ηf3 dB-values can be achieved if the absorption length for photons along a wave-
guide and the transport distance of charge carriers is decoupled by an edge-coupled photodiode, Fig.
5.7. The active zone is an InGaAs absorbing layer embedded between n-InP and p-InP heterolayers.
The structure is operated with reverse bias. The light is coupled into the vertical InP/InGaAs/InP slab
waveguide along the z-direction. An InGaAs layer with a height of wA = 0.2µm results in a field con-
finement factor of Γ = 0.4. If InGaAs has an absorption coefficient α, the waveguide shows an effective
absorption constant Γα for the fundamental mode propagating into the z-direction. The pin-photodiode
has a z-extension of L. The input coupling efficiency from an external source into the waveguide is ηcoupl.
The quantum efficiency of the photodiode is

η = ηcoupl

(
1− e−αΓL

)
. (5.37)

With the above values for α, Γ and waveguide lengths L > 10µm the quantum efficiency is η ≈ ηcoupl.
Coupling efficiencies of ηcoupl = 0.8 are feasible. The cutoff frequency for small absorption layers wA
is given by the second line of Eq. (5.35), f3 dB = 0.55/τ . Independently of f3 dB and of the operating
wavelength the quantum efficiency is near η ≈ 0.8. For wA = 0.2µm the transit-time limited cutoff
frequency would be f3 dB = 124 GHz. The bandwidth of such waveguide photodiodes is limited by the
RaCsp time constant in Fig. 5.3 which can be decreases by controlling the waveguide cross-section area.
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Fig. 5.7. Pin-diode with edge-coupling of light, wA is the height of the active zone. x-axis: direction of current flow; z-
axis: direction of light propagation (Aktive Zone = active zone, p-Kontakt = p-contact, Isolator = insulator, n-substrat =
n-substrate).

Diffusion cutoff frequency When absorption inside the diffusion zones must not be neglected (see
Fig. 5.1 for a schematic of the pin-photodiode) the cutoff frequency is limited by relatively slow diffusion
processes. Carriers having a diffusion constant D move by a mean distance ∆x =

√
Dτ inside a time

interval τ (random walk). For the case of Fig. 5.1 ∆x = xn − xnD = Ln =
√
Dnτn would be given by the

diffusion length Ln, and τ = τn would equal the minority lifetime τn. If the n-doped layer is short (the
contact region has a length of zero, the diffusion zone has a length ddif < Ln) we have ∆x = ddif. The
diffusion-limited cutoff frequency is defined by

fdif =
1

τ
=

D

(∆x)2
=

µkT0

e(∆x)2
. (5.38)

Assuming a short semiconductor with ∆x = 0.2µm and µn = 8 500 cm2 / (V s) (1 500 cm2 / (V s)) for
GaAs (Si) diffusion-limited cutoff frequencies are computed to be fdif = 540 GHz (94 GHz). For this
example the actual cutoff frequency will not be diffusion-limited. However, for indirect semiconductors
the minority carrier lifetime increases up to τ = 1 ms. Therefore the cutoff frequency can be as small as
fdif = 1 kHz.

5.1.5 Device structures

The depletion-layer width w and the depletion-layer capacitance Csp for an abrupt pn-junction can be
computed if the impurity concentrations nA, nD, the intrinsic density ni, the thermal voltage UT = kT/e,
the built-in voltage UD (German Diffusionsspannung), and the reverse voltage U across the depletion
region are known. U > 0 means that the positive battery contact was connected to the n-doped semicon-
ductor,

w =

√
2ε0εr(UD + U)

e

(
1

nA
+

1

nD

)
,

Csp =
ε0εrF

w
, UD = UT ln

nAnD
n2
i

.

(5.39)

In the short-wavelength region most photodiodes are made from Si. The light penetration depth is
1/α = 15µm at λ = 0.85µm. For the pin-photodiode of Fig. 5.8(a) the light penetrates an anti-reflection
coating (SiO2, Si3N4) and a thin p-doped layer (< 1µm) without significant reflection or absorption.
The absorption region is made of n−-doped material (e. g., nD = 1.3 × 1014 cm−3). The propagation
direction of the light as discussed on Page 110 coincides with the drift of the faster carriers (electrons
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Fig. 5.8. Pin-photodiodes. (a) Planar Si photodiode (b) InGaAs/InP photodiode with mesa structure and illumination
through the InP substrate (AR-Belag = anti-reflection coating, RLZ Raumladungszone = depletion region, Kontakt =
contact. Bonddraht = bond wire).

in Si). A p-doped guard ring prevents a breakdown at high reverse voltages. The width of the depletion
layer for U = 10 V, nD = 1.3× 1014 cm−3 � nA, ε0 = 8.85× 10−12 F m−1, εr = 11.7 is about w = 10µm.
With a mean saturation drift velocity v = (vn + vp)/2 = 64µm /ns a transit-time cutoff frequency near
f3 dB = 3 GHz results from Eq. (5.35). With an active photodiode area of F = (200µm)2 and a resis-
tance of RS + Ra = 60 Ω (see Eq. (5.18)) the RC cutoff frequency is 6.4 GHz. Thus, the photodiode is
transit-time limited. For RP = 0 a quantum efficiency of η ≈ 0.5 is to be expected, Eq. (5.14).

The performance of pin-photodiodes can be improved considerably by using a double-heterostruc-
ture design. Similar to the case of semiconductor lasers, the middle i-type layer is sandwiched between
the p-type and n-type layers of a different semiconductor whose bandgap is chosen such that light is
absorbed only in the middle i-layer. Since the bandgap energy of InP is WG = 1.35 eV, the material
is transparent for light whose wavelength exceeds λ = 0.918µm. By contrast, the bandgap of lattice-
matched (In0.53Ga0.47)As is WG = 0.75 eV corresponding to a wavelength of λ = 1.653µm. The middle
InGaAs layer thus absorbs strongly in the wavelength region 1.3 . . . 1.6µm. The diffusive component of the
detector current is eliminated completely in such a heterostructure photodiode simply because photons
are absorbed only inside the depletion region.

For the long-wavelength region, 3-dB cutoff frequencies near 100 GHz were measured. Figure 5.8(b)
shows a pin-photodiode with mesa structure. Epitaxial layers of n-InP (buffer layer about 3µm, nD =
5 × 1016 cm−3) and InGaAs (1.2µm, nominally undoped, nD = 3 × 1014 cm−3) are grown on a n+-InP-
substrate. By diffusion of Zn into the InGaAs layer a p+n-junction is formed at a distance of 0.5µm
away from the surface. An etching process forms a mesa to reduce the capacitance. The illumination is
through the substrate which is transparent for λ > 0.92µm. By reflection of the light at the p-contact
the quantum efficiency is increased to η ≈ 0.5.

Figure 5.9 shows planar pin-photodiodes. In Fig. 5.9(a) the n-type (nD ≈ 1015 cm−3) InP, the In-
GaAs, and the (In,Ga)(As,P) (WG = 0.95 eV =̂ 1.3µm) layers are nominally undoped. The Zn p-diffusion
reaches for about 1µm into the InGaAs layer. The height of the InGaAs absorption layer is in the range
0.4 . . . 5µm, depending on the quantum efficiency design and on the tolerated depletion-layer capaci-

Fig. 5.9. Planar InGaAs/InP pin-photodiodes. (a) Illumination through the substrate (b) illumination from top, AR-
Belag = anti-reflection coating
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tance. Measured efficiencies are η = 0.3 . . . 0.6. Transit time 3-dB frequencies of 20 GHz and RC cutoff
frequencies of 80 GHz were achieved.

With similar but top-illuminated planar pin-photodiodes (Fig. 5.9(b)) quantum efficiencies of η = 0.7
at λ = 1.55µm and f3 dB = 25 GHz are common. The cap layer (0.5µm) consists of n-InP (nD =
1016 cm−3) which is moved to a very shallow depth (0.1µm) into the InGaAs layer for increasing the
depletion layer over whole of the 2-µm InGaAs layer (nD < 5× 1015 cm−3).

Instead of the n+-InP substrate with a buffer layer of n−-InP the diode can be grown on a semi-
insulation InP-substrate. In this case the buffer layer is replaced by a n+-InP contact layer (nD =
1019 cm−3) with a lateral contact.

5.2 Noise

Optical receivers convert optical power Pe into electrical current i through a photodiode. The relation
i = SPe in Eq. (5.17) assumes that the current resulting from such a conversion is noise free. However,
this is not the case even for a perfect receiver. Two fundamental noise mechanisms, quantum (or shot)
noise and thermal noise (or Johnson or Nyquist noise) lead to current fluctuations even when the optical
signal has a constant power Pe in the classical sense. The relation i = SPe still holds if we interpret i as
the average current. However, current fluctuations affect the receiver performance. The objective of this
section is to briefly review some important noise mechanisms8.

5.2.1 Noise mechanisms

The classical light power Pe(t) results from an average over a few optical cycles. Fluctuations in Pe(t) are
transferred to the photocurrent i(t). The ideal classical signal exhibits a constant amplitude and phase,
and no photocurrent fluctuations would be expected. However, quantum mechanics tells that this “ideal”
signal (an ideal laser signal) consists of a sequence of independent photons which are Poisson distributed
in time. Each photon generates an electron-hole pair with a quantum efficiency η, Eqs. (5.14), (5.36).
Thus, the short-circuit photocurrent consists of a stream of statistically independent elementary charges
which are also Poisson distributed in time. This type of noise is known as shot9 noise. Shot noise occurs
also in purely electronic circuits if independent electrons cross a biased or unbiased junction at random
times. However, this electronic shot noise is independent of any signal photons and is to be observed
without any intentional illumination.

The photodiode shot noise as a result of illumination with light is also denoted as quantum noise. The
origin of this noise can be attributed neither to the source nor to the detector alone, because the noise
shows only when photodiode and light source are interacting during the detection process.

Quantum noise, spontaneous emission noise and shot noise in electronic circuits are unavoidable. In
addition to these noise mechanisms there are other noise sources which could be avoided or reduced, for
instance thermal noise of a resistor; this noise represents a specific form of spontaneous emission noise
and can be reduced by cooling the device.

Photocurrent noise

The photocurrent i(t) (or i for short) fluctuates around its expectation i(t) (or i for short). The fluctuation
is denoted as δi(t) (or δi for short),

δi(t) = i(t)− i(t) , δi = i− i . (5.40)

8See Ref. 17 on Page 6. Sect. 4.4 p. 163
9Shot (pl. same or shots): A small lead pellet used in quantity in a single charge or cartridge in a shotgun (The Concise

Oxford Dictionary. Oxford: Oxford University Press 1990) — Onomatopoetically for the current noise to be heard in a
loudspeaker resembling the falling of shot(s) onto a sheet metal.
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The autocorrelation function ϑi(τ) of i is related to the two-sided power spectrum Θi(f) via the Fourier
transform,

ϑi(τ) = i(t+ τ) i(t) , Θi(f) =

+∞∫
−∞

ϑi(τ) e− j 2πfτ dτ . (5.41)

Because ϑi(τ) is real, the power spectrum has the property Θi(f) = Θ∗i (−f). From the definition,
the symmetry relation ϑi(τ) = ϑi(−τ) can be seen. As a consequence, the power spectrum is real,
Θi(f) = Θ∗i (f), and ϑi(τ) =

∫∞
0

2Θi(f) df defines a one-sided real spectrum 2Θi(f). The noise variance
is obtained by σ2

i = ϑi(τ = 0),

σ2
i = (i− i )2 = δi2 =

∫ +∞

−∞
Θi(f) df =

∫ ∞
0

2Θi(f) df . (5.42)

The spectral density of shot noise is constant and given10 by Θi(f) = ei. Usually, the differential fluctu-
ations inside a differential bandwidth df centred at the frequency f are of interest,

d
(
δi2
)

= 2Θi(f) df = 2ei df, |iRD|2 = 2ei df. (5.43)

The complex phasor iRD (effective or root mean square (RMS) value iRD,RMS =
(
|iRD|2

)1/2
; subscript R

for noise, German Rauschen) is defined to have the same power |iRD|2 per frequency interval11 df as the
actual noise process Eq. (5.43). Equation (5.43) expresses a property of the underlying Poisson statistics
for the photons: The probability p

N
(NP ) for measuring NP photons, if the expectation is NP = Ne, and

the associated second central moment of the process are

pN (NP ) =
NP

NP

NP !
e−NP , δN2

P = (NP −Ne)2 = NP , NP = Ne . (5.45)

The expected current i = SPe is computed from Eq. (5.17) on Page 113. Classical additional fluctua-
tions from the laser source which has a total output power Pa (Eq. (3.91) on Page 84) are described by
the relative intensity noise (RIN),

RIN =

∫ ∞
0

RIN(f) df =
δP 2

a

Pa
2 , d

(
δP 2

a

)
= Pa

2
RIN(f) df . (5.46)

The total differential photocurrent noise fluctuation including the (uncorrelated) received RIN (mean
power Pa ∼ Pe ∼ i) or the noise current iRD in a differential bandwidth df are given by

d
(
δi2
)

= 2ei df︸ ︷︷ ︸
shot resp.
quantum

noise

+ i
2

RIN(f) df︸ ︷︷ ︸
classical noise

= |iRD|2. (5.47)

The spectral shot noise power density for i = 1 mA measured at a resistor of R = 50 Ω amounts to(
2eiR

)
dB

= 10 lg
[
2eiR

/(
1 mW ·1 Hz−1

)]
= −168 dBm Hz−1.

10Rice, S. O.: Mathematical analysis of random noise. Bell Syst. Techn. J. 23 (1944) 282–332. Eq. (2.6-8)
11In Eq. (5.43) the spectral power density 2ei is frequency-independent. An integration over the frequency range 0 ≤ f ≤ B

results in the total current variance

δi2 =

∫ B

0
d
(
δi2
)

=

∫ B

0
2eidf = 2eiB = |iRD|2B , |iRD|2B = 2eiB = |iRD|2

∣∣∣
df→B

. (5.44)

However, to avoid an over-complicated notation, we drop the subscript B in the total variance |iRD|2B and replace df→ B
wherever it is appropriate, i. e., when the spectral noise current power density d

(
δi2
)/

df does not depend on frequency.
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An avalanche photodiode (APD) amplifies the primary photocurrent ipr = SPe by a current multipli-
cation factor M , the statistical average of which is denoted by M0. The avalanche multiplication process
contributes additional noise, which is described by an excess noise factor FM ,

FM =
M2

M
2 =

M2

M2
0

= 1 +
δM2

M2
0

. (5.48)

It is common to approximate FM by the function

FM = Mx
0 , x > 0 . (5.49)

For the APD current i = Mipr and for the noise current d
(
δi2
)

in a differential bandwidth df we find
the relations

i = M0ipr = M0
ηe

hfS
Pe,

d
(
δi2
)

= 2eiprM
2
0FM df + (M0ipr)

2 RIN(f) df = |iRD|2.
(5.50)

For M0 = 1, FM = 1, Eq. (5.50) reduces to the case of the pin photodiode, Eq. (5.47) on Page 122.

Shot noise in semiconductor junctions

A similar relation as for the noise in photodiodes holds for ordinary semiconductor pn-junctions in diodes
and transistors, too. The associated current fluctuation is also called shot noise12, and no illumination
with light is needed for this effect. Electrons and holes traverse the junction independently and at random
times, depending on the thermal energy a carrier happens to have, and this leads to a Poisson distribution
of the arrival times. A pn-junction which carries an average forward or reverse current i at a junction

Fig. 5.10. Small-signal equivalent circuit of a pn-junction with shot noise RMS current I in a bandwidth B. Current
fluctuation |I|2 = 2eiB, diffusion admittance Y (f), junction capacitance Csp

voltage U has a saturation current IS , and a small-signal conductance G0 for low frequencies f → 0.
With the thermal voltage UT (German Temperaturspannung) we then find the well-known relation

i = IS

(
eU/UT −1

)
, G0 =

∂i

∂U
=

IS
UT

eU/UT , UT =
kT0

e
. (5.51)

The diffusion admittance of the junction Y (f) ∼
√

1 + jωτ ≈ 1 + 1
2 (jωτ) − 1

8 (jωτ)
2

(not all carriers
cross the junction in a period 1/f) is given by (ω = 2πf , carrier recombination lifetime τ)

Y (f) = G0

√
1 + jωτ = G(f) + jBY (f), G(f) ≈ G0

(
1 +

1

8
ω2τ2

)
. (5.52)

With Eq. (5.51) we write

d
(
δi2
)

= 2ei df + 4eIS df + 4kT0[G(f)−G0] df =


2ei df for f → 0
4kT0G(f) df for i = 0
4kT0G0 df for i = 0 and f → 0

. (5.53)

12See Footnote 9 on Page 121
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The equivalent circuit of a pn-junction with shot noise RMS current I and fluctuation |I|2 = 2eiB in a
bandwidth B (see Eq. (5.44)13), diffusion admittance Y (f) and junction capacitance Csp is depicted in
Fig. 5.10.

Thermal noise

In any conductor at a finite temperature T0, electrons move randomly. Random thermal motion of elec-
trons in a resistor manifests as a fluctuating current even in the absence of an applied voltage. The load
resistor Ra of a photodiode (Fig. 5.3) located in the front end of an optical receiver adds such fluctuations
to the noise current generated by the photodiode. Figure 5.11 shows a noisy conductance GQ at temper-

Fig. 5.11. Equivalent circuit of a conductance GQ with thermal noise

ature T0 (hatched). In an equivalent circuit, GQ is replaced by a noiseless conductance with the same

value, supplemented by a noise current source with an RMS value iQ,RMS =
(
|iQ|2

)1/2
in a differential

bandwidth df . This current source represents thermal noise. The available (maximum) differential power
dPv (German verfügbare Wirkleistung) in an impedance-matched load conductance GQ connected to

the open terminals in Fig. 5.11 is dPv = ( iQ,RMS/ 2)
2/
GQ. Thermal noise is also called Johnson noise or

Nyquist noise after the two scientists who first studied it experimentally and theoretically14. The equiv-
alent short-circuit noise current of the noisy conductance GQ and the available power at temperature T0

in a bandwidth B are

|iQ|2 = 4kT0GQ df, Pv =

∫ B

0

dPv =

∫ B

0

(√
4kT0GQ df

2

)2
1

GQ
= kT0B for hB � kT0 . (5.54)

The one-sided spectral power density is 2ΘT (f) = kT0, (kT0)dB = 10 lg
[
kT0

/(
1 mW ·1 Hz−1

)]
=

−174 dBm Hz−1 at room temperature T0 = 293 K. To explain Eq. (5.54) on needs to know the aver-
age number NP of photons15 with energy hf per mode in thermal equilibrium. In a bandwidth B these
photons provide a power of NPhfB. Electrical circuits are usually single-moded, and in addition the con-
dition hf � kT0 is easily fulfilled for f < 1 THz (hf < 4 meV)16 at room temperature (kT0 = 25 meV).

If the source admittance is complex, i. e., if YQ = GQ+ jBQ, then only its real part GQ = <{YQ} has
to be substituted in Eq. (5.54).

5.2.2 Electronic amplifier noise

For characterizing an electronic two-port network as in Fig. 5.12 (four-terminal or fourpole network,
German Vierpol), we need defining the transducer power gain Γü (German Übertragungsleistungsverstär-

13See Footnote 11 on Page 122
14See Ref. 17 on Page 6. Sect. 4.4.1 p. 164
15If a number N = N1 + N2 of microsystems (N1 in state W1, N2 in state W2) is in thermal equilibrium with an

electromagnetic radiation mode, the average number of emissions must equal the average number of absorptions, N2w(eM) =
N1w(aM), i. e., with Eq. (3.32) on Page 68, N2(NP + 1) = N1NP . Because in thermal equilibrium we have N1/N2 =
exp[(W2−W1)/(kT0)] from Eq. (3.7) on Page 54, we find Planck’s formula for the average number of photons per polarization
in one transverse and longitudinal mode with frequency f (Bose-Einstein distribution, see Footnote 50 on Page 157),

NP =
1

exp
(
hf
kT0

)
− 1
≈ {hf � kT0} ≈

kT0

hf
, hf = W2 −W1. (5.55)

16See Footnote 9 on Page 2
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Fig. 5.12. Noisy two-port network (curent sources i1K , i2K) with noisy generator admittance (iQ, YQ) and noise-free load
admittance Y2

kung) as a ratio of the power PS2 delivered to the load admittance Y2 at terminals 2-2, and the available
source power PSv1 (German verfügbare Wirkleistung). A generator with admittance YQ = GQ + jBQ
would deliver its maximum or available power to a load admittance Y ∗Q = GQ− jBQ, which is matched to
the generator. We further introduce the available power gain (German verfügbare Leistungsverstärkung)
Γv as the ratio of the available power PSv2 at the output terminals 2-2, and the available power of the
signal source PSv1,

Γü(f) =
PS2

PSv1
, Γv(f) =

PSv2

PSv1
. (5.56)

Noisy two-port

The equivalent circuit of a noisy electronic amplifier in Fig. 5.12 is driven by a signal source (German
Quelle) with a deterministic short-circuit current represented by phasor iS (in parallel to iQ, not drawn
in Fig. 5.12) and admittance YQ, the real part GQ = <{YQ} of which emits thermal noise. This noise
is described by a short-circuit current phasor iQ that fluctuates according to Eq. (5.54), see definition in
Eq. (5.43) on Page 122,

|iQ|2 = 4kT0GQ df, YQ = GQ + jBQ, T0 = 293 K . (5.57)

Noise of the two-port network is described by short-circuit current sources i1K , i2K . The quantities
|i1K |2, |i2K |2 and i1Ki∗2K are assumed to be known, e. g., by measurement. Because it is is convenient to
concentrate all noise sources at the two-port network’s input, the output noise source i2K is transformed
to the input. Correlations between output and input current noise i1K are taken care of by a two-port noise
network17,18 (noise fourpole, German Rauschvierpol) with uncorrelated noise sources in, un ( inu∗n = 0)
and a correlation admittance Yc, which is electrically not visible outside the two-port noise network
because Yc is connected in parallel to −Yc, see Fig. 5.13. Between terminals 1-1, 2-2 in Fig. 5.12 and Fig.
5.13 the following relations hold:(

i1
i2

)
=

(
−i1K
−i2K

)
+

(
Y11 Y12

Y21 Y22

)(
u1

u2

)
(5.58)(

i1
i2

)
=

(
−in + Y11un − Ycun

Y21un

)
+

(
Y11 Y12

Y21 Y22

)(
u1

u2

)
By comparison and with inu∗n = 0, the two-port noise network parameters can be calculated,

|in|2 = |i1K |2 −
∣∣i1Ki∗2K∣∣2/ |i2K |2,

|un|2 = |i2K |2
/
|Y21|2,

Yc = Y11 − Y21 i1Ki∗2K
/
|i2K |2 = Gc + jBc.

(5.59)

17H. Rothe, W. Dahlke: Theory of noisy fourpoles. Proc. IRE 44 (1956) 811–818
18Horst Rothe, German microvawe engineer and physicist, ?Hosterwitz, Dresden (Germany) 13.12.1899, † 10.07.1974.

Appointed as full professor at Technische Hochschule Karlsruhe on 1.4.1956. Founded the Institut für Hochfrequenztechnik
und Hochfrequenzphysik (Institute of High-Frequency Technology and High-Frequency Physics) in 1958. This institute
was renamed in Institut für Hochfrequenztechnik und Quantenelektronik (IHQ, High-Frequency and Quantum Electronics
Laboratory) in 1971, and again renamed in Institut für Photonik und Quantenelektronik (Institute of Photonics and
Quantum Electronics, IPQ) in 2008.
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Fig. 5.13. Two-port noise network (German Rauschvierpol), representing the noise properties of the two-port network by
uncorrelated noise generators in, un ( inu∗n = 0) together with a correlation admittance Yc

For convenience, we define a noise resistance Rn and a noise admittance Gn (attention: Rn 6= 1/Gn) in
a bandwidth B,

|un|2 = 4kT0Rn df, |in|2 = 4kT0Gn df. (5.60)

Noise figure of electronic amplifiers

As a quality metric for the noisy two-port network, we define a noise figure F (German Rauschzahl) by
relating signal-to-noise power ratios (SNR) at input and output, or by the ratio of noise powers at the
load admittance Y2 in the case of the actual noisy two-port network, and in the case of a hypothetically
noise-free but otherwise identical structure. As before, the signal’s short-circuit current source iS would
be in parallel to iQ, but is not depicted in Fig. 5.12 and 5.13.

From Fig. 5.13 we find the short-circuit currents referred to the (physically not accessible) terminals
1′-1′. The equivalent total short-circuit noise current at this input is

iR = iQ + in + un(YQ + Yc). (5.61)

All terms are uncorrelated. With the help of Eq. (5.57) and (5.60) we then calculate the noise figure,

F =
SNRv1

SNR2
=
PSv1

PRv1

PR2

PS2
=
PR2 /Γü

PRv1
=

total output noise power in Y2 related to input

noise power in Y2 for noise-free TP related to input
≥ 1,

F =
|iR|2

|iQ|2
= 1 +

Gn +Rn|YQ + Yc|2

GQ
, (5.62a)

F = 1 + Fz = 1 +
TR
T0
, |iR|2 = 4k (FT0)GQ df = 4k (T0 + TR)GQ df. (5.62b)

The quantity Fz = F − 1 is dubbed excess-noise figure (German zusätzliche Rauschzahl), TR represents
the noise temperature of the two-port network (German Rauschtemperatur). The signal-to-noise power
ratios SNRv1 and SNR2 stand for the ratio of the available signal power and the available noise power at
the input, and the ratio of the actual signal and noise powers at the output, respectively.

The noise of an electronic amplifier can be equivalently described by a fictitious increase of the
temperature of the source conductance GQ over the reference temperature T0 by a factor of F . The noise
temperature TR specifies the equivalent fictitious temperature which must be added to the reference
temperature T0 of the source conductance GQ.

For a noise-free two-port network F = 1 holds (Fz = 0, TR = 0). The noise figure F has a relative
minimum19 for the case of noise tuning (German Rauschabstimmung) BQ = −Bc (this allows measure-
ment of Bc). A global minimum for F is found if in addition the source conductance GQopt is properly
chosen (noise matching, German Rauschanpassung). For GQopt, Fzmin we calculate from Eq. (5.62a)

GQopt =

√
Gn
Rn

+G2
c , Fzmin = 2Rn(GQopt +Gc). (5.63)

19See Ref. 17 on Page 125
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For negligible output-input correlation i1Ki∗2K = 0 (approximately true for an emitter circuit with a
bipolar transistor, BPT, or for a source circuit with a field-effect transistor, FET) we find according to
Eq. (5.59) Yc = Y11 (for known Yc, the quantities Gn, Rn can be deduced by measuring Fzmin, GQopt

according to Eq. (5.63)). For a FET we have <{Y11} ∼ ω2; for a BPT, the quantity Ropt = 1/GQopt is
smaller than 100 Ω, and for a FET about 1 kΩ. Minimum noise figures are about 10 lgF = 1 dB.

Noise figure of an amplifier chain The noise figure of a concatenated arrangement of noisy two-port
networks is calculated according to Fig. 5.14. The noise temperature TR1 of the first two-port network is
defined assuming a source admittance YS at temperature TS . The noise temperature TR2 of the second

two-port network, however, is defined for a source admittance Y
(1)
out at temperature TS , which is to be

seen when looking from the input terminals of the second two-port network to the left,

Y
(1)
out = Y

(1)
22 −

Y
(1)
12 Y

(1)
21

Y
(1)
11 + YS

.

If both amplifiers have no feedback (Y12 = 0) and identical output short-circuit admittances (Y22 = YS),
the two-port networks can exchange position without a change in the individual noise figures. However,
the noise figure of the amplifier chain changes.

Fig. 5.14. Concatenation of noisy four-port networks

We relate to the transducer power gain Γü(f) and the available power gain Γv as defined in Eq. (5.56)
on Page 125. For calculating the noise figure of the concatenated two-ports (TP1,2), we employ the
definition Eq. (5.62a),

F12 =

available total noise
power from TP2︷ ︸︸ ︷

k(TS + TR1)Γv1B Γü2 +

noise power
from TP2︷ ︸︸ ︷
kTR2Γü2B

kTSΓv1B︸ ︷︷ ︸
noise-free

TP1

× Γü2︸︷︷︸
noise-free

TP2

= 1 +
TR1

TS
+

TR2

Γv1TS
= 1 +

TR12

TS
= 1 + Fz12 (5.64)

For the noise temperature and the excess-noise figure we find Friis’ formulae20

TR 12 = TR 1 +
TR 2

Γv 1
, Fz 12 = Fz 1 +

Fz 2

Γv 1
. (5.65)

Noise measure

The question remains in which sequence amplifiers have to be concatenated to achieve a minimum total
noise figure. The following considerations hold for the condition

Y
(1)
out = Y

(2)
out = YS .

20Friis, H. T.: Noise figures of radio receivers. Proc. Inst. Radio Engrs. 32 (1944) 419–422. — In 1942, Harald T. Friis,
working in Bell Labs in Holmdel NJ, developed the theory of “noise figure” that allows engineers to calculate the signal-to-
noise ratio at the output of a complex receiver chain, and thus has a powerful equation named after him.

Harald Friis was born in Naestved Denmark, in 1893. He graduated 1916 in Electrical Engineering from the Polytechnic
Institute (founded 1829 by H. C. Oersted, the discoverer of electromagnetics). In 1919 he received a fellowship which
enabled him to come to the United States where he studied radio engineering at Columbia University. In 1920, Friis joined
a research group headed by at the Western Electric Company and apparently got stuck in the U.S.A. He eventually became
a U.S. citizen, which later did not prevent him from being awarded the Valdemar Poulsen Medal of the Danish Academy
of Sciences. He held 31 U.S. patents submitted over five decades of research.
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As a rule this is true in the microwave region where input and output impedances equal the line impedance
ZL = 50 Ω. If this assumption is not applicable for a specific problem, then the calculation must be
performed considering the different source admittances.

Let us assume that the arrangement Fig. 5.14 leads to the smaller noise figure, i. e., Fz12 < Fz21.
Further, we consider amplifiers with Γv1 > 1, Γv2 > 1 so that (1 − 1/Γv) > 0 is guaranteed. For the
concatenation sequence 1-2 we therefore write

Fz12 = Fz1 +
Fz2
Γv1

< Fz2 +
Fz1
Γv2

= Fz 21 or
Fz1

1− 1/Γv1
<

Fz2
1− 1/Γv2

.

It is convenient to define a noise measure M (German Rauschmaß)21,22,23 for the two-port network by

Mi =
Fzi

1− 1/Γvi
. (5.66)

Because we had assumed that the concatenation sequence 1-2 leads to a lower total noise figure than the
sequence 2-1, the noise measures of the amplifiers must be related by M1 < M2. So we find the following
rule: A concatenation of amplifiers leads to a minimum total noise figure, if they are arranged in sequence
of increasing noise measures.

5.2.3 Optical amplifier noise

For optical amplifiers (OA) in a frequency region hf � kT0 where quantum effects become important,
the relations of Sect. 5.2.2 must be reconsidered. Especially the uncertainty relation comes now into play
which restricts the accuracy of simultaneous measurements of amplitude and phase or real and imaginary
part of a field. The minimum input noise equivalent Pr qu,x ascribed to an ideal OA per mode and
per polarization (e. g., linear polarization in x-direction) would be such that the uncertainty relation is
just fulfilled. Even without any input power, amplified spontaneous emission (ASE) noise power can be
extracted24 from the OA output. This noise is represented by a fictitious OA input noise power Pr eq,x,
so that a hypothetically noise-free OA with single-pass power gain Gs had the same ASE noise power
GsPr eq,x as the true OA.

Let us observe one mode in one polarization, i. e., we observe for one transverse mode (e. g., a field
emitted from a single-mode fibre) inside an optical bandwidth BO one longitudinal mode during the
observation time 1/BO by simultaneously measuring both the amplitude and the phase (or the real and
imaginary part) of the optical field, see the sampling theorem Eq. (2.4) on Page 15. With the help of
the inversion factor nsp from Eq. (3.40) on Page 70, the ASE noise power PASE,x per mode and per
polarization, and consequently also the fictitious (not extractable25) equivalent input noise power Pr eq,x

of a real-world OA can be calculated26,

PASE,x = (Gs − 1)nspwOBO = GsPr eq,x , (5.67)

Pr eq,x =
Gs − 1

Gs
nspPr qu,x , Pr qu,x = wOBO, wO = hfe .

When the OA is effectively removed by making it transparent with the choice Gs = 1, no extractable ASE
noise power remains and Pr eq,x = 0 results. The quantum fluctuations per mode and per polarization,
expressed by the non-extractable minimum quantum noise power Pr qu,x cannot disappear.

Spontaneous emission factor nsp and gain Gs are linked. If the gain is larger than but close to one,
the spontaneous emission factor is very large.

21Haus, H. A.; Adler, R. B.: Invariants of linear networks, 1956 Inst. Radio Engrs. Convention Record, Part 2, 53 (1956)
22Haus, H. A.; Adler, R. B.: Optimum noise performance of linear amplifiers. Proc. Inst. Radio Engrs. 46 (1958) 1517–1533
23Haus, H. A.; Adler, R. B.: Circuit theory of linear noisy networks. Technology Press Research Monograph, New York:

Wiley 1959
24See the remarks on Page 22 and in Footnote 34
25See the remarks on Page 22 and in Footnote 34
26See Ref. 29 on Page 22. Chapter 9 Eq. (9.2/15)
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5.3 Direct receiver

A basic direct optical receiver is displayed in Fig. 5.15. The quantities in this figure are to be interpreted
as complex phasors. The receiver consists of an optical front end with a pin photodiode, the current i (t)
of which feeds an electronic amplifier. Noisy components are hatched. It is advantageous with respect to

Fig. 5.15. Schematic of an optical receiver with pin-photodiode, source conductance GQ and amplifier (noisy components
are hatched). The phasor iRD specifies the shot noise of the pin-photodiode, and iR (or i′R) represents the noise phasor of
the source conductance YQ = GQ + jωCsp including the junction capacitance Csp of the photodiode, and of the amplifier
without feedback (or of the transimpedance amplifier).

receiver bandwidth and sensitivity to employ a so-called transimpedance amplifier (TIA, German Trans-
impedanzverstärker, TIV). This designation reflects the fact that its complex transfer function between
the output voltage at terminals 2-2 and the input current at terminals 1-1 represents an impedance
ZF . First we apply the description of electronic amplifier noise (Sect. 5.2.2 on Page 124 ff.) to an optical
receiver, and then a detailed description of the TIA will be given.

Amplifier without feedback We start with the representation of a noisy amplifier as depicted in Fig.
5.13 on Page 126 and complete it with the essentials of the equivalent photodiode circuit displayed in Fig.
5.3 on Page 113. The extended two-port representation is shown in Figure 5.16-[top]. Next we introduce
the voltage gain V < 0 and the input admittance Y1E of the two-port network and find the equivalent
circuit of Fig. 5.16-[bottom],

V = − Y21

Y22 + Y2
, Y1E = Y11 + V Y12 . (5.68)

Here, iS = SPe represents the phasor of the signal source. The amplifier noise is taken care of by a
fictitious temperature increase of the source conductance GQ according to the amplifier’s noise figure F ,

|iR|2 = F |iQ|2 = 4kFT0GQ df. (5.69)

Fig. 5.16. Representation of the two-port network by an input admittance (
”
Eingangsleitwert“) Y1E and a voltage trans-

former u2 = V u′1; the noise sources of four-port and generator admittance are replaced by a noise current iR.
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Transimpedance amplifier We now supplement the amplifier Fig. 5.16 with an ideal voltage amplifier
V2 > 0 at terminals 2′-2′ and a negative-feedback with admittance YF between the output terminals 3-3
of amplifier V2 and the input terminals 1-1,

YF = GF + jBF , |iF |2 = 4kT0GF df. (5.70)

With these additions we arrive at the circuit schematic Fig. 5.17(a). The noise current iF does not
influence the voltage u3, which is impressed at output terminals 3-3 by the ideal voltage amplifier V2.
Because the output impedance of the ideal voltage amplifier V2 is zero, the feedback admittance YF is
directly visible between the input terminals 1-1. From Fig. 5.17(a) we find

i1 = YFu1 + Ycu1 − iF − in − Ycu′1 + (Y1E − V V2YF )u′1. (5.71)

In a simplified equivalent circuit without explicit feedback, Fig. 5.17(b), the admittance −V V2YF appears
in parallel to Y1E , the feedback admittance YF is seen parallel to YQ, and the noise current iF adds to
the (uncorrelated) noise current iR in Fig. 5.16-[bottom]. Using Eq. (5.61) on Page 126 and Eq. (5.68), we
write for the equivalent circuit parameters

Y ′Q = YQ + YF , i′R = iR + iF = iQ + in + un(Y ′Q + Yc) + iF ,

Y ′1E = Y1E − V ′YF , V ′ = V V2 < 0.
(5.72)

Through the noise current iF of the feedback conductance GF , the negative-feedback amplifier exhibits
a slightly increased noise current i′R > iR,

|i′R|
2

= |iQ|2 + |in|2 + |un|2
∣∣Y ′Q + Yc

∣∣2 + |iF |2, (5.73)

therefore GF should be as small as possible within the restrictions set by the limiting RFCF bandwidth
(RF = 1/GF ) due to a parasitic feedback capacitor CF parallel to GF (BF = ωCF ). However, the real
part of the input admittance increases by −V ′GF > 0, and therefore the input bandwidth increases
dynamically (assuming BF � GF ). For the signal output voltage u3 of this transimpedance amplifier we
find from Fig. 5.17(b) and for V ′YF � YQ + YF + Y1E

u3 = iS
V ′

YQ + YF + Y1E − V ′YF
≈ − iS

YF
= −iSZF . (5.74)

Fig. 5.17. Noisy negative-feedback circuit. (a) Detailed equivalent circuit (V < 0, V2 > 0, V ′ = V V2 < 0) (b) Simplified
equivalent circuit (iS , iR, YQ, Y1E as in Fig. 5.16)
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In analogy to Eq. (5.62a) on Page 126, the TIA has a noise figure (YF is regarded to be part of the
amplifier)

F ′(f) =
|i′R|2

|iQ|2
= 1 +

GF +Gn +Rn|Y ′Q(f) + Yc(f)|2

GQ
. (5.75)

The noise figure F ′ depends on frequency, because both Y ′Q = GQ + GF + jω (Csp + CF ) (PD junction
capacitance Csp, Eq. (5.72) and Eq. (5.57 on Page 125) as well as Yc = Gc+jωCc (Eq. (5.59) on Page 125)
are frequency-dependent with (usually) capacitive imaginary parts.

5.3.1 Direct reception limit

The smallest power which can be received is dictated by receiver noise. We employ a photodiode with
transimpedance amplifier. For finding the limiting signal-to-noise power ratio SNR, the equivalent circuit
Fig. 5.17 is reduced to its essential parts, Fig. 5.18. For the photodiode noise current iRD, Eq. (5.43) on
Page 122) we neglect any RIN. Photodiode noise current iRD and TIA noise current i′R, Eq. (5.72) on
Page 130), stem from different physical processes and are uncorrelated, therefore the noise powers can
be added. The signal current iS = SPe in Eq. (5.17) on Page 113 is proportional to the received optical

Fig. 5.18. Optical transimpedance receiver input. The quantities iS , iRD are signal and noise current of the photodetector
according to Eq. (5.50) on Page 123; for i′R, Y ′Q see Eq. (5.72)

signal power Pe. The signal-to-noise power ratio (SNR) γdir for direct reception is defined as the ratio
of the average electrical signal power PS ∼ i2S and the electrical noise power PR in an electrical signal
bandwidth B (see Eq. (5.44)27),

PR =

∫ B

0

dPR ∼ δi2 with dPR ∼ d
(
δi2
)

= |iRD|2 + |i′R|2 = 2eiS df + 4kF ′(f)T0GQ df . (5.76)

According to Eq. (5.73) and (5.75), and with Y ′Q = G′Q + jωC ′Q = YQ + YF = GQ +GF + jω (CQ + CF )

and Yc = Gc + jωCc, the electronic TIA noise |i′R|2 has a part that does not depend on frequency, and a
part which increases with f2,

|i′R|2 = 4kT0

[
G′Q +Gn +Rn

(
G′Q +Gc

)2
+ ω2Rn

(
C ′Q + Cc

)2]
df (5.77)

The so-called noise corner frequency (German Rausch-Eckfrequenz) fRE describes at which frequency
the frequency-independent and the frequency-dependent parts contribute alike,

ω2
RE = (2πfRE)

2
=
G′Q +Gn +Rn

(
G′Q +Gc

)2
Rn
(
C ′Q + Cc

)2 . (5.78)

The total short-circuit current noise power at terminals 1′-1′ in Fig. 5.18 for a signal bandwidth B is then

δi2 =

∫ B

0

d
(
δi2
)

= 2eiSB + 4kT0

[
G′Q +Gn +Rn

(
G′Q +Gc

)2][
1 +

1

3

B2

f2
RE

]
B . (5.79)

27See Footnote 11 on Page 122
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If B � fRE holds, then the current noise power increases in proportion to the signal bandwidth, δi2 ∼ B,
while for B � fRE the current noise power increases much stronger, δi2 ∼ B3. To minimize δi2 for a
given signal bandwidth B, the source conductance G′Q = GQ + GF as well as the source capacitance
C ′Q = CQ + CF should be as small as possible.

For a direct receiver with TIA we find the electrical signal-to-noise power ratio (SNR) γ with the help
of Eq. (5.76), (5.79) and (5.75),

γ =
PS
PR

, γdir =
i2S

|iRD|2 + |i′R|2
=

ηPe
2hfeB

1

1 + 4kF ′T0 GQ/ (2eSPe)
. (5.80)

In most cases of practical interest, the amplifier noise |iR|2 � |iRD|2 determines the receiver performance
(thermal noise limit). However, if quantum noise becomes larger than amplifier noise, |iRD|2 � |iR|2 or
4kF ′T0GQ/(2eSPe)� 1, the maximum SNR can be achieved,

γdir qu =
ηPe

2hfeB
(quantum noise limited,

4kF ′T0GQ
2eSPe

� 1). (5.81)

This is called the shot noise or quantum noise limit. In this case, the SNR increases linearly with Pe
and depends only on the quantum efficiency η, the signal bandwidth B, and the photon energy hfe. It
is common to choose the symbol duration Ts = 1/Rs (symbol rate Rs, not to be mixed up with the PD
series resistance RS in Fig. 5.3 on Page 113) according to the Nyquist condition Ts = 1/(2B) (sampling
theorem). The maximum shot-noise limited SNR is given by the mean number of absorbed photons ηNe
per symbol duration Ts (the absorbed energy in Ts is ηPeTs = ηPe/(2B)),

γdir qu = ηNe . (5.82)

In the shot noise limit, a SNR of 20 dB can be realized for Ne = 100 photons per bit (assuming η ≈ 1).
By contrast, several 1 000 photons are required to obtain γdir qu =̂ 20 dB when thermal noise dominates
the receiver. As a reference, for a 1.55µm NRZ-OOK shot-noise limited receiver operating at a bit rate
of Rb = Rs = 10 Gbit/s, we receive Ne = 100 photons per bit for an average power of Pe ≈ 130 nW.

However, with a simple pin-photodiode receiver the shot noise limit cannot be reached in practice be-
cause electronic amplifier noise dominates over shot noise, and a minimum received power of Pe ≈ 1.3 mW
(1 000 photons per bit) required for reaching the shot noise limit would be completely inacceptable.

5.3.2 Signal quality metric for RZ-OOK reception

A physical representation of a direct receiver circuit is shown in Fig. 5.19(a). It corresponds to Fig. 5.17 on
Page 130 with the explicit addition of the photodiode circuitry and an equalizer (pulse shaping) network
having the complex transfer function E (f). The voltage uA at output A drives a data-recovery section
(not drawn) consisting of a decision circuit and a clock-recovery circuit. We assume RZ-OOK modulation.
The clock-recovery unit then isolates a spectral component at the clock (= symbol) frequency 1/T , see
Fig. 2.12(c) on Page 37, and helps to synchronize the decision process28. Inside each symbol time slot
Ts ≡ Tt ≡ T at sampling times ts determined by the clock-recovery circuit, the decision circuit compares
the received signal u(ts) to a threshold level uS (German Schwelle), and decides whether the signal
corresponds to a logical one (u(ts) > uS) or a logical zero (u(ts) < uS).

Eye diagram An equalizing filter shapes the received impulse such that the resultant pulse shape hA(t)
has hA(ts) = 1 for the sampling time ts = 0, and that any interference with impulses hA(0 ± nTt) at
neighbouring sampling points n = 1, 2, . . . disappears, hA(±nTt) = 0 (symbol duration and sampling
period Ts as well as the clock period Tt ≡ T are identical). A number of noise-averaged random pulses
ūA (t) is seen in the upper row of Fig. 5.20. The probability of erroneous reception can be judged by super-
imposing the actual noisy electrical random bit sequences uA (t) inside a symbol duration Ts ≡ Tt, lower

28See Ref. 17 on Page 6. Sect. 4.3.3 p. 159
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Fig. 5.19. Optical direct receiver circuit with transimpedance amplifier (TIA) and equalizer (pulse shaping) network having
a transfer function uA/u3 = E (f). The quantities iS = SPe and iRD stand for the phasors of the pin photodetector signal
and noise currents, Eq. (5.50) on Page 123. The phasors i′R and Y ′Q represent the noise current of the TIA and its source

admittance, Eq. (5.72) on Page 130. The voltage uA at output A drives a data-recovery section (not drawn) consisting of
a decision circuit and a clock-recovery circuit. (a) Circuit schematic with feedback admittance YF connecting terminals 3
and 1 of the TIA. (b) Simplified equivalent circuit, see also Fig. 5.17 on Page 130.

graphs in Fig. 5.20. The resulting shapes resemble an eye and are therefore called eye diagrams. Figure
5.20(a) represents RZ-OOK symbols which are confined to their respective time slots, Fig. 5.20(b) refers
to widened pulses that are shaped such that no intersymbol interference occurs at the sampling points
ts, and Fig. 5.20(c) shows strongly widened RZ-OOK pulses with significant inter-symbol interference.

Fig. 5.20. Eye diagrams for RZ pulses, sampling time t = 0. Solid lines: No noise. (a) Large noise, no impulse overlap
(b) Optimum case: small noise, impulse overlap, but no intersymbol interference at sampling time (c) Low noise, strong
impulse overlap, strong intersymbol interference at sampling time. Symbol duration T ≡ Ts ≡ Tt, Auge = eye

In the following, the expectations of the voltage uA (t) at sampling time are denoted as u0,1 where
u0 = 0 is assumed,

u(t) = uR0(t) (0-level received),
u(t) = uR1(t) + u1hA(t) (1-level received).

(5.83)

The best sampling time is found when the signal level difference between noisy 1-level and noisy 0-level
is maximum. The optimum decision threshold will be determined in the next sections.

Noise properties The quantities uR0(t), uR1(t) are random voltages. For being definite, and because
this assumption holds true if electronic noise dominates, we assume for uR0,1 Gaussian probability density
functions (PDF) with an expectation zero. The PDF for the decision circuit voltages at the sampling
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times are w0(u) and w1(u) for a received 0 and 1, respectively,

w0(u) =
1√

2πσ2
0

exp

(
− u2

2σ2
0

)
, u = u0 = 0, (u− u)2 = u2

R0 = σ2
0 ,

w1(u) =
1√

2πσ2
1

exp

(
− (u − u1)2

2σ2
1

)
, u = u1, (u− u)2 = u2

R1 = σ2
1 .

(5.84)

Because a logical 1 is transmitted at a higher optical power level than bit 0, its shot noise variance could
be slightly larger, σ2

1 ≥ σ2
0 , see Eq. (5.43). Figure 5.21 displays the probability densities w0(u) and w1(u).

Fig. 5.21. Monomodal probability densities w0(u), w1(u) of sampled input voltage of the decision circuit for the received
symbols 0 and 1. Standard deviations σ0, σ1, expectation of voltage for a received one u1, specific choice of decision threshold
uS fixed by the bit error parameter Q

Optimum decision threshold The probability of erroneously deciding 1 when 0 is received is p(1d|0r)
(and p(0d|1r) for the opposite case). The probabilities of receiving logical 0 and logical 1 are p(0r) and
p(1r), respectively. The optimum decision threshold uS minimizes the bit error ratio (BER, bit error
probability) and requires ∂ BER /∂uS = 0,

BER = p(1r)p(0d|1r) + p(0r)p(1d|0r), p(0r) + p(1r) = 1, (5.85a)

BER = p(1r)

∫ uS

−∞
w1(u) du+ p(0r)

∫ +∞

u
S

w0(u) du, (5.85b)

∂ BER

∂uS
= p(1r)w1(uS)− p(0r)w0(uS)

!
= 0, (5.85c)

p(1r)w1(uS) = p(0r)w0(uS). (5.85d)

With equal probabilities of logical 0 and 1, p(1r) = 1 − p(0r) = 1
2 , the optimum decision threshold for

monomodal probability density functions w0,1(u) as in Fig. 5.21 (only one maximum) is to be found at
the intersection w1(uS) = w0(uS), independent of the detailed shapes of the PDF.

Bit error ratio and decision threshold for Gaussian noise Because electronic receiver noise
dominates in most practical cases, we now assume Gaussian PDF as in Eq. (5.84) and substitute them
in Eq. (5.85b). For performing the integrals, we need the formulae for the error function erf(z) and the
complementary error function erfc(z),

erf(z) =
2√
π

z∫
0

exp(−t2) dt, erfc(z) =
2√
π

∞∫
z

exp(−t2) dt,

erf(∞) = 1, erfc(±z) = 1∓ erf(z).

(5.86)
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An approximation for z > 2 with an error < 3 % is specified29 in the first part of Eq. (5.87), while a
display of lg {− lg [erfc(z)]} vs. lg z results essentially in a straight line,

erfc(z) =
exp(−z2)√

πz2

[
1− 1

2z2
+ . . .

]
, lg {− lg [erfc(z)]} ≈ {z � 1} ≈ 2 lg z + 0.434 . (5.87)

For Gaussian density functions

w(z) =
1√

2πσ2
exp

[
− (z −A)2

2σ2

]
(5.88)

we apply Eqs. (5.86), (5.87) and find

z2∫
z1

w(z) dz =
1

2
erf

(
z −A
σ
√

2

)∣∣∣∣z2
z1

=
1

2
erfc

(
z −A
σ
√

2

)∣∣∣∣z1
z2

. (5.89)

Referring to Fig. 5.21 and Eq. (5.84) we have

p(0d|1r) =

∫ uS

−∞
w1(u) du =

1

2
erfc

(
u1 − uS
σ1

√
2

)
,

p(1d|0r) =

∫ ∞
uS

w0(u) du =
1

2
erfc

(
uS

σ0

√
2

)
.

(5.90)

The results Eq. (5.90) have to be substituted into Eq. (5.85b). Because of the typical values

1 < σ1/σ0 ≤
√

2 , σ1 ≈ σ0 (electronic noise dominates), (5.91)

p(1r) =
σ1

σ0
p(0r) ' p(0r), p(1r) ≈ p(0r) ≈ 1/2,

the relation p(1r)/σ1 = p(0r)/σ0 can be replaced approximately by p(1r) ≈ p(0r) ≈ 1/2. For p(1r)/σ1 =
p(0r)/σ0 we find the following simple rule for an optimum decision threshold (see Fig. 5.21, u0 = 0),

Q =
u1 − u0

σ0 + σ1
=
u1 − uS
σ1

=
uS − u0

σ0
,

p(0d|1r) = p(1d|0r) = 1
2 erfc(Q/

√
2 ),

σ0w0(uS) = σ1w1(uS) = exp(−Q2/2)/
√

2π .

(5.92)

Substituting into Eq. (5.85a) (5.85d), the minimum bit error probability reads

BER =
1

2
erfc

(
Q√
2

)
, (5.93)

BER50 %-RZ =
1

2
erfc

(√
γ√
2

)
for Q2 =

1

2

u2
1/2

σ2
=
P

(50 %-RZ)
S

PR
= γ . (5.94)

The bit-error parameter Q (signal quality factor) assumes values of Q = 3.7, 6, 6.7, 7.3, 7.9 for BER =
10−4, 10−9, 10−11, 10−13, 10−15. For a given Q and known standard deviations σ0, σ1 of the noise, the
signal voltage u1 and the optimum threshold can be computed from Eq. (5.92).

For p(1r)/σ1 6= p(0r)/σ0 the choice of uS according to Eq. (5.92) leads again to a bit error probability
Eq. (5.93) (i. e., a BER value independent of p(1r) and p(0r)), but this threshold is no more optimum, and
the BER is no longer minimum. This drawback is counterbalanced by the advantage that the estimated
BER does not depend on the actual bit probabilities p(1r) and p(0r).

For 50 %-RZ signals with average power P
(50 %-RZ)
S for equally distributed logical 0 and 1, a Gaussian

w0(u) centred at u0 = 0, and Gaussians w0,1(u) having the same variances contributing a noise power
PR = σ2

0,1 = σ2, we find the minimum BER for the optimum threshold uS = u1/2 from the electrical
signal-to-noise power ratio γ, Eq. (5.94). This relation will be verified for a more general case in the
following section, Eq. (5.97) on Page 136.

29See Ref. 51 on Page 33. Chapter 7 Eq. (7.1.23) p. 298
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Relating signal quality Q and signal-to-noise power ratio SNR For computing the BER, we
required the actual shapes of the probability density functions w0(u), w1(u). Thus, there is no unique
dependency of the SNR defined by moments u, u2 up to the second order, compare Eq. (5.80), and the
BER. However, the Gaussian distribution is fully determined by moments up to the second order, and a
unique connection between the SNR and the BER can be established, if the noise signals at the decision
circuit input are truly Gaussian.

From a simple measurement of the mean u and the effective fluctuation
√
u2 , the SNR can be

determined. This is also important for numerical simulations, where it is practically impossible to simulate
100 erroneous bits out of 100× 109 bits for BER = 10−9. The real-time bit rate achieved by a numerical
simulation is about 64 kbit/s for a computer with 3× 109 floating-point operations per second. This leads
to a computing time of 18 days for only one value of the optical power Pe.

We assume a signal according to Eq. (5.83) and neglect intersymbol interference of the shaped impulses
hA(t), i. e., the impulses are assumed not to interfere with a signal in neighbouring clock periods. Zeros
and ones are equally distributed, Rb is the bit rate, and Tt = 1/Rb the clock period. With Eqs. (5.83),
(5.84) the mean electrical power P at the decision circuit is

P =
1

2

{
1

Tt

∫ +Tt/2

−Tt/2
[u1hA(t) + uR1(t)︸ ︷︷ ︸

uR1 = 0

]2 dt+
1

Tt

∫ +Tt/2

−Tt/2
u2
R0(t) dt

}

=
u2

1

2
I(hA) +

1

2
(σ2

0 + σ2
1),

I(hA) =
1

Tt

∫ +Tt/2

−Tt/2
h2
A(t) dt .

(5.95)

If the SRV is computed from Eq. (5.95), and if we substitute u1 from Eq. (5.92), the ratio of electrical
signal power PS and electrical noise power PR is

γ =
PS
PR

=
u2

1I(hA)/2

(σ2
0 + σ2

1)/2
= Q2 (σ0 + σ1)2I(hA)

σ2
0 + σ2

1

. (5.96)

Because we typically have 1 < σ2
1/σ

2
0 ≤ 2, see Eq. (5.91), and the integral assumes values around I(hA) =

1/2 for usual impulse shapes (e. g., for a raised cosine hA(t) = 1
2

[
1 + cos(2πt/Tt)

]
= cos2(πt/Tt) we find

I(hA) = 3/8 ≈ 1/2), we have approximately

γ =
PS
PR

= (0.97 . . . 1)×Q2, → γ =
PS
PR

= Q2. (5.97)

In summary: If the noise at the decision circuit follows a Gaussian distribution, if the impulse shapes
are such that I(hA) ≈ 1/2 and if 1 < σ2

1/σ
2
0 ≤ 2, then the bit-error parameter Q and the BER can be

deduced from a measurement of γ. For a special case this was already shown in Eq. (5.94) on Page 135.
For BER = 10−9 we have from Eq. (5.93) Q = 6, and from Eq. (5.97) γ = 36 =̂ 15.6 dB follows.

Assuming a signal-independent noise power PR, (e. g., electronic receiver noise dominates), the signal
quality factor Q is proportional to the optical signal power, Q ∼ Pe. A display of lg (− lg BER) vs. lgPe
then results approximately in a straight line, see Eq. (5.93) and (5.87) on Page 135.

Power penalty Depending on the circumstances, an additional noise source contributing an additional
electrical noise power PRz can be compensated by increasing the electrical signal power from PS to PS+.
Because of Eq. (5.97) we write

γ = Q2 =
PS
PR

=
PS+

PR + PRz
. (5.98)

We define the quantities γ+, Q+, BER+ by

γ+ = Q2
+ =

PS+

PR
, BER+ =

1

2
erfc

(
Q+√

2

)
. (5.99)
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The SRV which would have been measured for an increased electrical signal power PS+ without additional
noise sources is denoted as γ+.

Additive noise If PRz stands for signal-independent additive electrical noise power (German zu-
sätzliche Rauschleistung), we calculate from Eqs. (5.98), (5.99)

PS+

PS
=

(
Q+

Q

)2

= 1 +
PRz
PR

. (5.100)

Additional additive noise can always be compensated by an increased optical power Pe at the receiver
input. For the electrical signal power we have the relation PS ∼ i2S = S2P 2

e , an we define a power penalty
(German Leistungs-Buße) by

pB = 10 lg

(
Pe+

Pe

)
= 5 lg

(
PS+

PS

)
= 10 lg

(
Q+

Q

)
= 5 lg

(
1 +

PRz
PR

)
. (5.101)

Multiplicative noise If the additional noise power is always in proportion to the signal power
PS ∼ PRz it can be specified by a fixed residual SNR γR = Q2

R (German Rest-Signal-zu-Geräusch-Lei-
stungs-Verhältnis),

PRz =
1

γR
PS =

1

Q2
R

PS , γR = Q2
R =

PS
PRz

. (5.102)

For the case of additive noise (Eq. (5.98)) the bit error parameter Q could be increased and the BER
decreased arbitrarily by increasing the signal power PS . For multiplicative noise (Eq. (5.102)) the BER
is limited to a minimum BERR by QR. Substituting the additional noise specified in Eq. (5.102) into
Eq. (5.98), one calculates

γ = Q2 =
PS
PR

=
PS+

PR + PRz
=

PS+

PR + PS+/Q2
R

=
Q2

+Q
2
R

Q2
+ +Q2

R

. (5.103)

With Q+/Q from Eq. (5.103) the power penalty Eq. (5.101) becomes

pB = 10 lg

(
Pe+

Pe

)
= 10 lg

(
Q+

Q

)
= 5 lg

(
Q2
R

Q2
R −Q2

)
. (5.104)

Only for QR > Q (i. e., PRz < PR) the additional noise can be compensated by an increased signal power.
For pB → ∞ the bit error parameter reaches the limit Q → QR. The BER approaches asymptotically
the residual or floor error probability (German Rest-Bitfehlerwahrscheinlichkeit)

BERR =
1

2
erfc

(
QR√

2

)
. (5.105)

Substituting Q from Eq. (5.103) into Eq. (5.93) leads to

BER =
1

2
erfc

(
Q√

2

)
=

1

2
erfc

 1√
2

Q+QR√
Q2

+ +Q2
R

 . (5.106)

In Fig. 5.22 the bit error probability Eq. (5.106) is displayed as a function of Q and of Q+. For additive
noise only (i. e., QR →∞, see Eq. (5.102)) the BER decreases monotonically with increasing Q (increasing
signal power PS , see Eq. (5.97)). At Q = Q0 = 6 an value of BER = 10−9 is reached. With multiplicative
noise as in Eq. (5.102), characterized by a floor error probability (Eq. (5.105)) of BERR = 2.6 × 10−23,
5.2× 10−15, 2.0× 10−12 (QR = 9.9, 7.7, 6.9), a bit error probability of BER = 10−9 requires Q+1 = 7.55,
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Fig. 5.22. Bit error probability from Eq. (5.106) as a function of the bit error parameters Q (denoted as BER(Q)) and Q+

(denoted as BER(Q+)) for various values of the residual bit error parameter QR

Q+2 = 9.5, Q+3 = 12. After Eq. (5.99), Q+ measures the increase in signal power, Q+ ∼
√
PS+ ∼ Pe+).

The power penalties Eq. (5.104) amount to pB = 1 dB, 2 dB, 3 dB.

An example for multiplicative noise Eq. (5.102) are uncertainties (jitter) of the sampling time. If the
sampling at t = 0 takes place with an effective uncertainty of ∆t, the residual bit error parameter is30

QR =

√
128

π2(∆t/Tt)2
. (5.107)

For QR = 9.9 (pB = 1 dB at BER = 10−9) the maximum jitter is given by ∆t/Tt ≤ 0.34, i. e., ∆t = 85 ps
at a bit rate of Rb = 1/Tt = 4 Gbit/s.

Quantum limit From Eqs. (5.82), (5.97), (5.93) we estimate a shot-noise limited bit error probability

BER =
1

2
erfc

(√
ηNe

/√
2
)
. (5.108)

For an optimum receiver with η = 1 and BER = 10−9 the mean number of photons per 1-bit is Ne = 36.
As stated after Eqs. (5.82), actual direct receivers are thermal-noise limited.

The BER expression Eq. (5.108) is not truly accurate, since its derivation is based on the Gaussian
approximation for the receiver noise statistics. For an ideal detector (no electronic noise, no dark current,
quantum efficiency η = 1), we have σ0 = 0, and vanishing quantum noise in the absence of incident
optical power, so the decision threshold can be set arbitrarily close to the 0-level signal. Indeed, for such
an ideal receiver, 1-bits can be identified without error as long as at least one photon is detected. An
erroneous detection occurs only if a 1-bit fails to produce an electron-hole pair. For such a small number
of photons and electrons, shot-noise statistics cannot be approximated by a Gaussian distribution, and
the exact Poisson statistics Eq. (5.45) must be used31.

If zero photons arrive for a 0-bit, and Ne > 0 is the average number of photons in each 1-bit, the
probability that a 0-bit is wrongly taken for a 1-bit is w(0r|1d) = 0, and the probability of taking wrongly
a 1-bit for a 0-bit is p(0d|1r) 6= 0. For the Poisson distribution the probability of deciding for a 0-bit when
actually a 1-bit was received is given by

p(0d|1r) = pN (0) =
N0
e

0!
e−Ne = e−Ne . (5.109)

30Shen, T. M.: Power penalty due to decision-time jitter in receivers using avalanche photodiodes. Electron. Lett. 22
(1986) 1043–1045

31See Ref. 17 on Page 6. Sect. 4.5.3 p. 175
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The probability of a 1-bit be p(1r) = 1/2. The probability of deciding for a 0-bit instead of the received
1-bit is given by Eq. (5.109). The bit error probability according to Eq. (5.85a) is

BER =

1/2︷ ︸︸ ︷
p(1r)

exp(−Ne)︷ ︸︸ ︷
p(0d|1r) +

1/2︷ ︸︸ ︷
p(0r)

0︷ ︸︸ ︷
p(1d|0r), therefore: BER = 1

2 e−Ne . (5.110)

For BER = 10−9 one needs

Ne = − ln
(
2× 10−9

)
= 20 =⇒ Ne = 20 for BER = 10−9 (5.111)

photons for a 1-bit. Since this requirement is a direct result of quantum fluctuations associated with the
incoming light, it is referred to as the quantum limit. Each 1-bit must contain at least Ne = 20 photons
to be detected with a BER < 10−9. This requirement can be converted into power by using the relation
Pe = Nehfe/Tt. The receiver sensitivity, defined as Pe bit = (Pe + 0)/2 = Pe/2 is given by (for the choice
of the signal bandwidth B = 1/(2Tt) see text after Eq. (5.81))

Pe =
Nehfe
Tt

, Pe bit =
Pe
2

=
Nehfe

2Tt
= NehfeB = 2Ne bithfeB ,

Ne bit = (Ne + 0)/2 = Ne/2 . (5.112)

Therefore an average number of Ne bit = Ne/2 = 10 photons per bit (1-bit and 0-bit with equal prob-
ability) must be received. This represents the absolute quantum limit for an ideal binary system with
direct reception for BER = 10−9. Most receivers operate 20 dB or more above the quantum limit. This is

Fig. 5.23. Measured minimum received photon numbers Ne for a 1 bit (η not known, BER = 10−9). Quantum limit
Ne = 20, η = 1 (– – –). (a) pin-photodiode λ = 1.3, 1.55µm (•), pin-photodiode with optical amplifier (◦) (b)
avalanche photodiode (APD) λ = 1.55µm (•), λ = 0.85µm (�)

equivalent to saying that Ne typically exceeds 1 000 photons in practical pin-photodiode receivers. With
avalanche photodiodes (APD), optical preamplifiers or with heterodyne reception the quantum limit can
be approached more closely as will be discussed in a later section. Figure 5.23 displays some experimental
data. With direct reception and for BER = 10−9, typical receiver sensitivities in terms of the number Ne
of received photons per bit slot Tt are

Ne = 4 000 pin-photodiode,
Ne = 150 APD,
Ne = 152 pin-photodiode and optical preamplifier.

(5.113)
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5.4 Coherent receiver

Coherent reception32,33 allows the full recovery of an optical field Es (t) = Ês cos (ωst+ ϕs) with signal
bandwidth B, transferred to a lower frequency range, but requires a copolarized34 optical local oscillator
(LO) field EO (t) = ÊO cos (ωOt+ ϕO) as a reference. Depending on the value of fZ = |fs − fO| (ωZ =
2πfZ , intermediate frequency (IF), German Zwischenfrequenz), a coherent receiver is classified as a
heterodyne receiver (fZ > B, usually fZ > 3B, see Fig. 5.25 on Page 143), as an intradyne receiver,
(0 < fZ < B), or as a homodyne receiver (fZ = 0). The sensitivity of a coherent optical receiver is much
better than the sensitivity for direct detection, and shot-noise limited reception becomes possible even
with low-power signals.

Figure 5.24(a) displays a schematic of a simple unbalanced coherent receiver with only one photodiode
(PD), while Fig. 5.24(b) shows a more elaborate balanced receiver with two photodiodes (PD 1, PD 2).
Each PD provides an IF photocurrent iZ cos (ωZt+ ϕs − ϕO) at its output. The IF output current of the
balanced receiver results from the difference of the individual PD currents, i (t) = i2 (t) − i1 (t). More
details will be given in Sect. 5.4.1 on Page 144 ff.

Fig. 5.24. Heterodyne receiver for mixing the superposition of an optical signal field Es (t) = Ês (t) cos (ωst+ ϕs) and

a copolarized optical local oscillator (LO) field EO (t) = ÊO cos (ωOt+ ϕO) on a photodedetctor (PD), resulting in a
photocurrent iZ (t) cos (ωZt− ϕO) at the intermediate frequency (IF) fZ = fs− fO = ωZ/ (2π). (a) Unbalanced receiver
with one PD. (b) Balanced receiver with beam splitter and two photodetectors PD 1 and PD 2. The output IF current
i (t) = i2 (t)− i1 (t) represents the difference of the individual photocurrents. [Modified from Ref. 32. Folie 2] (c) Optical
hybrid (shaded box) with 2 × 2 directional couplers (instead of the beam splitter in Subfigure (b)) and an additional π/2
phase shifter for the LO (which lacks in Subfigure (b)). The circuit is equivalent to the schematic of an IQ-demodulator in
Fig. 2.7(b) on Page 29. [After Ref. 33 Fig. 2.6]

For simplifying the calculations, we normalize the electric field strengths (unit
√

W ) of signal Es (t)
and LO EO (t) such that the associated optical powers as averaged over an optical period are Ps = 1

2 Ê
2
s

and PO = 1
2 Ê

2
O. We further assume that the IF frequency fZ = |fs − fO| is small (fZ < 100 GHz)

compared to the optical frequencies (fs ≈ fO ≈ 200 THz).

Photomixing A photodetector as in Sect. 5.1 on Page 109 ff. delivers electrons at a rate i (t)/ e that is
determined by the received photon rate Pe (t)/ (hfs), Eq. (5.119). Consider the superposition of a signal
and an LO field with frequency fO = fs ± fZ . The envelope of the superimposed (beating) fields is
periodic with the difference frequency fZ ,

Ee (t) = Ês cos (ωst) + ÊO cos (ωOt) = Ês cos (ωst) + ÊO cos
[
(ωs ± ωZ) t

]
=
[
Ês + ÊO cos (ωZt)

]
cos (ωst)∓ ÊO sin (ωZt) sin (ωst) . (5.114)

32G. Grau: Grundlagen der Kohärenten Optischen Nachrichtentechnik. Institut für Hochfrequenztechnik und Quantenelek-
tronik (IHQ), Universität Karlsruhe. Lecture notes WS 1996/1997

33K. Kikuchi: Coherent optical communications: Historical perspectives and future directions. In: M. Nakazawa et al.
(Eds.): High spectral density optical communication technologies. Optical and Fiber Communications Reports 6, Berlin:
Springer-Verlag 2010. Chapter 2

34However, polarization diversity receivers can handle arbitrary polarizations with respect to the polarization of the LO.
This can be done in hardware, or in software by digital signal processing. An example for the procedure is to be found in:
R. Schmogrow, P. C. Schindler, C. Koos, W. Freude, J. Leuthold: Blind polarization demultiplexing with low computational
complexity. IEEE Photon. Technol. Lett. 25 (2013) 1230–1233
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The rate of arriving photons with energy hfs depends on the power Pe (t) which results when averaging
cos2 (ωst), sin2 (ωst) and cos (ωst) sin (ωst) = 1

2 sin (2ωst) over an optical cycle of 1/fs,

Pe (t) = E2
e (t) = 1

2

(
Ê2
s + Ê2

O

)
+ ÊsÊO cos (ωZt) , ωZ = 2πfZ = ωs − ωO . (5.115)

This scheme is named heterodyne reception. Obviously, the received photon rate Pe (t)/ (hfs) ∼ cosωZt
varies with the intermediate frequency fZ , and therefore the current rate i (t)/ e ∼ cosωZt repro-
duces this periodicity. It would be the wrong idea with this type of photodetector to blindly calcu-
late the square of Eq. (5.114), and then worry about the sum frequency ωs + ωO in the product term
2ÊsÊO cos (ωst) cos (ωOt) — this type of photodetector cannot emit, e. g., green light at λ = 0.53µm
when fed with infrared light having wavelengths of λs,O = 1.06µm.

In preparation of a more detailed description of a heterodyne receiver, the subsequent two paragraphs
first discuss the essential properties of a beam splitter and an optical hybrid, and then consider local
oscillator noise.

Beam splitter and optical hybrid If a beam splitter is lossless, its scattering matrix is unitary. With
a proper choice of the reference planes, the fields at the output of a symmetric, matched beam splitter
as in Fig. 5.24(b) are

E1 (t) =
1√
2

[Es (t)− EO (t)] , E2 (t) =
1√
2

[Es (t) + EO (t)] . (5.116)

Such a four-port is mostly used in form of an optical 2 × 2 directional coupler realized in fibre or in
integrated technology.

Figure 5.24(c) displays the schematic of an IQ-demodulator as in Fig. 2.7(b) on Page 29. Optical 2×2
directional couplers are the basic building blocks. Such a circuit (without the photodiode mixers) is called
an optical hybrid.

Relative intensity noise and phase noise Both setups Fig. 5.24(a) and (b) have the same limiting
sensitivity as long as the LO behaves ideally, i. e., if only the shot (quantum) noise of an (in the classical
sense ideally stable) oscillator has to be taken into account. In practice, a laser oscillator with an average
output power PO exhibits also classical amplitude noise, so-called relative intensity noise (RIN) with
a one-sided power spectrum RIN (f), which describes power fluctuations due to amplified spontaneous
emission (ASE),

RINPO =

∫ +∞

−∞
RIN

(
f, PO

)
df =

(
PO − PO

)2
PO

2 =
δP 2

O

PO
2 , RIN

(
f, PO

)
= cPO

RIN (f)

PO
3 . (5.117)

Fortunately, for semiconductor lasers, RIN
(
f, PO

)
decreases35 with cPO/PO

3
(cPO is a constant). In the

following, we drop the bar over PO and represent the average just by PO, if not stated otherwise.
Spontaneous emission is responsible for phase noise, too. This phase noise is characterized by the

variance σ2
ϕ
i

of stationary random phase differences ϕi (t, τ0) = ϕ (t+ τ0) − ϕ (t) (τ0 = T could be the

time between two phase-encoded symbols, i. e., the symbol duration; the random phase ϕ (t) itself does
not belong to a stationary process). The variance σ2

ϕ
i

= 2π∆fHτ determines the laser linewidth ∆fH
which is measured for an observation time τ . Further we saw in Eq. (3.119) on Page 91 how the laser
linewidth ∆fH becomes broadened depending on the average output power Pa = PO. For a simplified
description, we neglect absorption loss (αV = 0), refer to Eq. (3.73) on Page 80, and substitute the loss
due to the finite mirror reflectivity vgαR = 1/ τP by the reciprocal photon lifetime τP .

Combining the informations on σ2
ϕ
i

and ∆fH , we can establish a relation for the phase noise variance

in terms of observation time τ (again, τ = T could be chosen to be the symbol duration) and various

35See Ref. 47 on Page 89. Sect. 6.3.4, p. 303. Typical data: RINdB (f) = 10 lg
(

RIN (f)/ 1 Hz−1
)

= −160 . . .−120 dB Hz−1
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laser parameters,

σ2
ϕ
i

= 2π∆fHτ, ∆fH = const× nsp(1 + α2)
hfO
PO τ2

P

. (5.118)

The linewidth ∆fH of the “hot” (oscillating) laser is in proportion to the square of the linewidth 1/ τP
of the “cold” resonator (no oscillation), so a narrow resonator bandwidth decreases ∆fH greatly. The
quantities nsp and α are the inversion factor Eq. (3.41) on Page 70 (nsp = 1 for ideally full inversion)
and the line broadening factor (Henry factor for amplitude-phase coupling) Eq. (3.113) on Page 90,
respectively. From Eq. (5.118) it can be concluded that phase noise influences are minimum for high
symbol rates (small τ = T ), optimum inversion (nsp = 1), small α-factor, large optical power PO, and a
small “cold” resonator bandwidth.

In the following sections, we first investigate heterodyne reception, and then specialize in homodyne
and intradyne receivers.

5.4.1 Heterodyne reception

In a heterodyne36 receiver the incoming modulated signal light Es (t) is superimposed with light from a
copolarized37 local oscillator EO (t), the power of which is usually much larger than the signal power (but
there are exceptions!). We choose unbalanced reception as in Fig. 5.24(a). The photodetector converts the
slowly varying optical power Pe (t) of the superposition to a current i (t) (additive mixing, see Eq. (2.34)
on Page 26),

Pe (t) =
[
Ês cos (ωst+ ϕs) + ÊO cos (ωOt+ ϕO)

]2
, i = SPe , S =

ηe

hfO
, (5.119)

Ps (t) = 1
2 Ê

2
s , PO = 1

2 Ê
2
O , PO � Ps .

When performing the squaring operation in Eq. (5.119), we respect the physical restrictions of the detec-
tion process as formulated in Eq. (5.115). The resulting photocurrent (usually amplified with a transim-
pedance amplifier, Page 130 ff.) comprises an IF component with amplitude iZ ,

i (t) = SPe (t) ≈ SPO + iZ cos (ωZt+ ϕs − ϕO) , iZ = SÊsÊO , Ps � PO . (5.120)

Remarkably, the signal amplitude Ês in the IF current amplitude iZ is multiplied by the (large) LO field
strength ÊO. By a proper evaluation of the IF current, we can retrieve both, amplitude Ês and phase
information ϕs of the signal, provided that amplitude ÊO and phase ϕO of the LO are sufficiently stable.

If PO � Ps holds, the LO contribution dominates the photocurrent shot noise. In addition we have
to regard the RIN of the LO according to Eq. (5.47) on Page 122 and Eq. (5.117) on Page 141. However,
for the moment we disregard any RIN of the LO, and the photocurrent noise power is then

d
(
δi2
)

= 2eSPO df , |iRD|2 = 2eSPO × 2B . (5.121)

While a large LO power increases the shot noise power, the electronic signal power increases in proportion.
As we will see in the next section, this allows shot-noise limited reception even with small optical signals,
as opposed to direct reception.

A schematic spectrum is displayed in Fig. 5.25. The baseband signal spectrum Ĕ (f) = Ĕ∗ (−f) of
the real signal E (t) with bandwidth B is transferred to the signal carrier frequency fs and forms the
upper sideband (USB) Ĕ (f − fs) and the correlated lower sideband (LSB) Ĕ∗ (−f + fs), see Eq. (2.36)
on Page 26. The mixing with a LO at frequency fO shifts the optical spectrum to the IF at fZ = fs−fO,
where Ĕ (−f + fZ) = Ĕ∗ (f − fZ) holds. As indicated by the triangular signal spectra in Fig. 5.25, the

36Edwin Howard Armstrong, American inventor, ?New York (NY) 18.12.1890, †New York City 1.2.1954. Laid the foun-
dation for much of modern radio and electronic circuitry, including the regenerative and superheterodyne (“superhet”)
circuits in 1918, and the frequency modulation (FM) system in 1933. After a stint as an instructor at Columbia University,
he joined the US Army Signal Corps laboratories in World War I in Paris. Armstrong returned after the war to Columbia
University to become assistant to Michael Pupin, the notable physicist and inventor and his revered teacher.— What was
called superhet technique at Armstrong’s time is now known as heterodyne reception, see also Ref. 39 on Page 145.

37See Footnote 34 on Page 140
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Fig. 5.25. Heterodyne spectra (also homodyne spectra for fO = fs). A real signal with bandwidth B is modulated on
an optical carrier with frequency fs. Upper (normal position) and lower optical sidebands (inverted position) are complex
conjugates and therefore correlated, see Eq. (2.36) on Page 26. This optical signal together with a local oscillator (LO) at
frequency fO illuminates a photodiode and is down-converted to a current at an intermediate-frequency fZ = fs − fO. For
the IF, the condition fZ > B must be fulfilled, otherwise the IF-USB at negative frequencies overlaps with the IF-LSB
for positive frequencies, and this would lead to distortions. For direct detection of the IF signal, the IF should be chosen
according to fZ > 3B. This avoids that in the case of direct IF detection, the baseband signal is perturbed by mixing
products of the IF sidebands, which would fall into a frequency range 0 ≤ f ≤ 2B.

USB is in normal position (German Gleichlage, larger positive baseband frequencies correspond to larger
IF components), while the LSB is in an inverted position (German Kehrlage, larger positive baseband
frequencies correspond to smaller IF components).

The condition fZ > B must be fulfilled, otherwise the IF-USB at negative frequencies overlaps with
the IF-LSB for positive frequencies, and this would lead to distortions. For direct detection of the IF signal,
an IF fZ > 3B should be chosen. This avoids interference with mixing products of the IF sidebands,
which would fall into a frequency range 0 ≤ f ≤ 2B, see Fig. C.2(d) on Page C.2 of Appendix C. The
bandwidth of the electronic IF amplifier after the photodetector must be 2B to cover both USB and LSB.

Heterodyne reception limit

For calculating the SNR in the IF range, we first have to average the squared electrical IF signal over
an intermediate frequency cycle, which results in the average electrical signal power PS = i2Z/2. The
electrical noise power PR is determined by photodiode shot noise |iRD|2 = 2eSPO × 2B, Eq. (5.47) on
Page 122, caused by the strong LO (where we neglect for the moment any RIN), and by electrical noise
|i′R|2 from the (transimpedance) amplifier. Analogous to Eq. (5.80) on Page 132 we find the IF SNR

γ =
PS
PR

, γIF-het =
i2Z
/

2

|iRD|2 + |i′R|2
=

1
2S

2Ê2
s 2PO

(2eSPO + 4kF ′T0GQ) 2B
=

ηPs
2hfOB

1

1 + +
4kF ′T0GQ

2eSPO

. (5.122)

If the LO power is chosen large enough, we actually realize shot (quantum) noise limited reception, even
with small received optical signal powers Ps,

γIF-het qu =
ηPs

2hfOB
= γdir qu (quantum noise limited,

4kF ′T0GQ
2eSPO

� 1). (5.123)

This SNR is the same as for direct reception (Eq. (5.81) on Page 132), SNRIF-het qu = SNRdir qu, albeit
both SNR are not really comparable — we relate the IF-band SNR of heterodyne reception to the
baseband SNR of direct reception. For a fair comparison we have to transfer the IF band electronically
to the baseband. This demodulation can be accomplished either coherently (by mixing with an electrical
local oscillator at frequency fZ), or incoherently (with a rectifier). These subtleties will be discussed in
the context of intradyne reception, Sect. 5.4.3 on Page 146 ff.

If the SNRIF-het qu is large enough, and if the phase information ϕs − ϕO need not be recovered,
incoherent demodulation is sufficient. The demodulation process adds the signal components in USB and
LSB coherently (by amplitude, because they are correlated), while the associated USB and LSB noise
components add incoherently (by power, because the noise is uncorrelated). As a result, the electrical
signal power quadruples, while the noise power in the baseband (BB) frequency range 0 . . . B doubles.
Therefore, the shot-noise limited BB SNR only doubles as compared to the IF-band SNR,

γBB-het qu =
ηPs
hfOB

= 2γdir qu (quantum noise limited,
4kF ′T0GQ

2eSPO
� 1). (5.124)
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Compared to the quantum noise limited SNR γdir qu for direct reception, Eq. (5.80) on Page 132 and
Eq. (5.121) on Page 142, the baseband SNR for heterodyne reception is twice as large. It corresponds to
two times the mean number ηNs of received signal photons per symbol duration Ts = 1/ (2B),

γBB-het qu = 2ηNs . (5.125)

Influence of amplitude and phase noise of the LO

Any real-world LO shows relative intensity noise (RIN) and phase noise, so its field amplitude ÊO (t),
its power PO (t), and its phase ϕO (t) fluctuate around their expectations, Eq. (5.117) and (5.118) on
Page 141.

Amplitude noise When taking RIN into account, the SNR relation Eq. (5.122) on Page 143 has to
be modified. As in Eq. (5.47) on Page 122 and with the help of Eq. (5.117) on Page 141, the photodiode
noise power is

|iRD|2 −→ 2eSPO 2B +
(
SPO

)2 ∫ fZ+B

fZ−B
RIN (f, PO) ≈ 2eSPO 2B +

(
SPO

)2 cPO
P 3
O

RIN (fZ) 2B.

The resulting SNR in the IF band including the influence of RIN then becomes

γIF-het =
1
2S

2Ê2
s 2PO(

2eSPO +
(
SPO

)2 cPO
P 3
O

RIN (fZ) + 4kF ′T0GQ
)
2B

=
ηPs

2hfOB

1

1 + ηcPO RIN (fZ) /(2hfOP 2
O) + 4kF ′T0GQ/(2eSPO)

. (5.126)

If shot-noise limited reception should be achieved, the LO power must be chosen large enough to render
RIN and electronic amplifier noise unimportant. If in the case of significant LO RIN an unbalanced
receiver would be used, the LO laser should have 20 . . . 25 dB more power38 than the incoming signal.

Phase noise If the actual LO phase fluctuates, the constant phase in Eq. (5.120) on Page 142 has to
be replaced by a random phase ϕO → ϕO (t). The IF current is inevitably influenced, and a measurement
of the signal phase ϕs becomes inaccurate to a certain degree. The only countermeasure is to reduce the
LO phase noise variance σ2

ϕi , see Eq. (5.118) on Page 142.

Balanced heterodyne reception

We now investigate a balanced heterodyne receiver according to Fig. 5.24(b) on Page 140 and consider RIN
and phase noise from the LO. Its field amplitude ÊO (t), its power PO (t), and its phase ϕO (t) fluctuate,
Eq. (5.117) and (5.118). With Eq. (5.116) and in analogy to Eq. (5.120) we find the photocurrents

i1,2 (t) = SE2
1,2 (t) ≈ 1

2
SPO (t)∓ 1

2
iZ (t) cos [ωZt+ ϕs − ϕO (t)] , iZ (t) = SÊsÊO (t) , Ps � PO

i (t) = i2 (t)− i1 (t) = iZ (t) cos [ωZt+ ϕs − ϕO (t)] . (5.127)

The IF current amplitude iZ (t) is identical to the one of an unbalanced heterodyne receiver, Eq. (5.120)
on Page 142 and Eq. (5.117) on Page 141. However, the balanced heterodyne receiver eliminates the term
SPO (t) and thus also the local oscillator’s RIN, which is detected in both photodetectors alike: The fully
correlated RIN current fluctuations in i1 and i2 cancel in the difference current i.

Still, even with a balanced receiver, the IF current amplitude iZ (t) is slightly perturbed by the
fluctuating ÊO (t), but much less than through the LO RIN when using an unbalanced receiver. The LO

38Infinera Corporation White Paper: Coherent DWDM technologies. Document Number WP-CT-10-2012
http://www.infinera.com/pdfs/whitepapers/Infinera Coherent Tech.pdf
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phase noise ϕO (t), however, directly influences the photocurrent phase even for a balanced receiver. Thus
the LO quality σ2

ϕi , i. e., the linewidth ∆fH and the observation time τ in terms of the symbol duration
T determine the reception quality for phase sensitive modulation formats.

If PO � Ps holds, the photocurrent shot noise is dominated by the LO. The shot noise fluctuations δi1
and δi2 of the photodetector currents are statistically independent, and we find according to Eq. (5.42)

and (5.47) on Page 122 for the differential current fluctuations d
(
δi2
)

and for the equivalent photodiode

shot noise |iRD|2eq of the balanced receiver output current i = i2 − i1

d
(
δi2
)

= d
(

(δi2 − δi1)
2
)

= d
(
δi21

)
+ d
(
δi22

)
= 2× 2e

(
1
2SPO

)
df, |iRD|2eq = 2eSPO × 2B . (5.128)

The equivalent photodiode shot noise |iRD|2eq for the balanced heterodyne receiver is determined by LO
shot noise only, even if RIN of the LO is taken into account.

Quantum noise limited sensitivity The shot (quantum) noise limited sensitivity for both, balanced
and unbalanced heterodyne receivers is identical, as can be seen by comparing Eqs. (5.120) and (5.127),
and by inspecting Eqs. (5.122), (5.123) and (5.124).

The following considerations assume an ideal LO and unbalanced receivers, but the considerations for
a noisy LO in heterodyne reception with a balanced receiver can be easily transferred to the special cases
of homodyne and intradyne reception.

5.4.2 Homodyne reception

To further improve the receiver sensitivity, homodyne39 reception can be chosen. In the same setup as
with unbalanced heterodyne reception Fig. 5.24 on Page 140, the receiver’s copolarized40 LO must then
have the same frequency as the optical carrier so that fZ = fs − fO = 0. This implies that the phases of
carrier and LO have to be aligned properly by an optical phase-locked loop (PLL). An LO power much
larger than the signal power PO � Ps guarantees that mixing products of the signal sidebands, which
would fall into a frequency range 0 ≤ f ≤ 2B, see the discussion in Fig. 5.25 on Page 143 and also Fig.
C.2(d) on Page C.2 of Appendix C remain below the shot noise power level. The photodetector current
Eq. (5.120) then becomes

i = SPe (t) = SPO + iZ cos (ϕs − ϕO) , iZ = SÊsÊO , fZ = 0 , Ps (t)� PO . (5.129)

The signal-dependent part iZ cos (ϕs − ϕO) of the photocurrent i is maximum if ϕs−ϕO = 0 is chosen, i. e.,
we receive only the in-phase component with respect to the LO phase, and the quadrature component
sin (ϕs − ϕO) cannot be detected. This renders homodyne reception more sensitive than heterodyne
reception, if we are interested in the signal amplitude Ês only. However, when employing an optical hybrid
and IQ-demodulation as in Fig. 5.24 on Page 140, both the in-phase and the quadrature component of
the signal can be retrieved.

39In a first homodyne experiment, R. A. Fessenden demonstrated in 1901 a “direct-conversion heterodyne receiver” or
beat receiver as a method of making continuous wave radiotelegraphy signals audible. Fessenden’s receiver did not see
much application because of its local oscillator’s stability problem. While complex isochronous electromechanical oscillators
existed, a stable yet inexpensive local oscillator would not be available until the invention of the triode vacuum tube
oscillator. In a 1905 patent, Fessenden stated the frequency stability of his local oscillator was one part per thousand. —
Reginald Aubrey Fessenden, Canadian-American radio pioneer, ?Milton (Quebec, Canada) 6.10.1866, †Hamilton (Bermuda)
22.7.1932. Broadcast the first program of music and voice ever transmitted over long distances. Working as a tester at the
Thomas Edison Machine Works, he met Thomas Edison and in 1887 became chief chemist of the Edison Laboratory at
Orange (NJ). In 1890 he became chief electrician at the Westinghouse works at Pittsfield, Mass., and in 1892 turned to an
academic career, as professor of electrical engineering first at Purdue University, West Lafayette, Ind., then at the Western
University of Pennsylvania (now the University of Pittsburgh), where he worked on the problem of wireless communication.
[Cited in parts from http://en.wikipedia.org/wiki/Heterodyne]. See also Ref. 36 on Page 142.

40See Footnote 34 on Page 140
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Phase diversity If both the in-phase component iI = iZ cos (ϕs − ϕO) and the quadrature com-
ponent iQ = iZ sin (ϕs − ϕO) are measured, a phase-diversity reception scheme can be designed by

iZ =
√
I2 +Q2. This is the usual practice with so-called lock-in amplifiers (operating up to a few

100 MHz), were weak signals buried in heavy noise are to be detected. The actual phase difference ϕs−ϕO
becomes irrelevant, see also Eq. (2.43) on Page 28 and Eq. (5.143) on Page 150.

Homodyne processing could be also applied to the heterodyne IF signal Eq. (5.120) on Page 142.
In fact, if phase information has to be retrieved, the final LO must be always phase-locked. The only
exception is a differential encoding of the phase41, where phase transitions between the present and the
previous symbols are evaluated (self-coherent receiver)42,43. In this case, no LO is required.

Homodyne reception limit

The limiting sensitivity for homodyne reception is derived in analogy to the heterodyne case, only that
we have to observe fO = fs which leads to an IF frequency fZ = 0. Further, the optical band is directly
transferred to the baseband, see Fig. 5.25 on Page 143. The relevant receiver bandwidth corresponds to
the signal bandwidth B, but the average electrical signal power is PS = i2Z (not PS = i2Z/2 as before).
Compared to γBB-het qu of Eq. (5.124), the SNR doubles,

γhom qu =
ηPs

1
2hfOB

= 2γBB-het qu = 4γdir qu (quantum noise limited,
4kF ′T0GQ

2eSPO
� 1). (5.130)

Compared to the quantum noise limited SNR for direct reception, Eq. (5.80) on Page 132, the SNR for
homodyne reception is four times as large. It corresponds to four times the mean number ηNs of received
signal photons with energy hfs ≈ hfO per symbol duration Ts = 1/ (2B),

γhom qu = 4ηNs . (5.131)

5.4.3 Intradyne reception

Optical intradyne reception44 takes an intermediate position between heterodyne and homodyne recep-
tion, Fig. 5.26. Compared to a heterodyne receiver, the IF of an intradyne receiver is larger than zero,
fZ > 0, but smaller than the signal bandwidth, 0 < fZ < B. As a result, it requires only a lower
bandwidth for the electronic circuits, and frequency offset as well as phase shift could be compensated
more easily by digital signal processing. However, this comes at the prize that a direct detection of the
down-converted signal is no longer possible, because negative and positive frequency components overlap,
second row of Fig. 5.26. Instead, we must employ coherent and phase-locked IQ-demodulation to recover
the optical signal’s amplitude and phase. This means that in this case we need electrical homodyne
detection for establishing a reference phase. Apart from that and generally spoken, intradyne reception
embraces both heterodyne and homodyne techniques.

To see this, we start with a detailed discussion of the intradyne setup Fig. 5.27. For simplicity’s sake
we omit the balanced photoreceivers. As shown in Sect. 38 on Page 144, this leads to identical results if
local oscillator RIN is disregarded for the simplified setup.

The incoming optical signal field, assumed to be copolarized45 with the LO, is written either compactly,
or in terms of the real (Ês,r) and the imaginary part (Ês,i) of a complex modulation function as in

41See DPSK encoding, Fig. 2.14 on Page 41
42J. Li: Optical delay interferometers and their application for self-coherent detection. PhD Thesis, Karlsruhe Institute

of Technology, 2012
43Li, J.; Billah, M. R.; Schindler, P. C.; Lauermann, M.; Schuele, S.; Hengsbach, S.; Hollenbach, U.; Mohr, J.; Koos,

C.; Freude, W.; Leuthold, J.: Four-in-one interferometer for coherent and self-coherent detection. Opt. Express 21 (2013)
13293–13304

44F. Derr: Coherent optical QPSK intradyne system: Concept and digital receiver realization. J. Lightwave Technol. 10
(1992) 1290–1296

45See Footnote 34 on Page 140
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Fig. 5.26. Intradyne IF spectra (IF =̂ fZ) compared to heterodyne and homodyne spectra for a baseband spectral width
B. [After Ref. 44 Table I]

Fig. 5.27. Optical intradyne receiver with electrical IQ-demodulator (simplified optical hybrid as in Fig. 5.24(c) on Page 140,

but without balanced photoreceivers). The incoming optical signal field Es (t) = Ês cos (ωs + ϕZ) and the in-phase and

quadrature component of an optical local oscillator field EO (t) = ÊO cos (ωO + ϕZ) are superimposed on photodetectors
PD1 and PD2, which both have the sensitivity S = ηe/ (hfs). The respective photocurrents comprise an IF component at
angular frequency ωZ = ωs−ωO and are in proportion to i1 (t) ∼ iZ cos (ωZ + ϕs − ϕO) and i2 (t) ∼ iZ sin (ωZ + ϕs − ϕO)

with IF amplitude iZ = SÊsÊO/2. Due to the specific PD properties, see the discussion in Sect. 5.4 on Page 140, the
angular sum frequency ωs + ωZ does not exist. Down-conversion of the IF signal to the baseband can be done either
incoherently, or coherently with with another pair of electrical IQ-demodulators as in Fig. 2.7(b) on Page 29. Both electrical
IQ-demodulators are different in so far, as i1 (t) in the upper IQ-demodulator and i2 (t) in the lower IQ-demodulator are
mixed with cos (ωZt+ ϕZ), while i2 (t) in the upper IQ-demodulator is mixed with − sin (ωZt+ ϕZ) and i1 (t) in the lower
IQ-demodulator is mixed with sin (ωZt+ ϕZ). The difference outputs (∆) of the upper and lower ID-demodulator provide
the in-phase (I) and the quadrature (Q) components of the transmitted data. — Another arrangement of connecting i1,2 (t)
to the electrical IQ-demodulators would be possible, too: Both inputs of the upper IQ-demodulator could be connected to
i1 (t), and both inputs of the lower IQ-demodulator could be connected to i2 (t), but then the 4 outputs I1 (t), Q1 (t), I2 (t)
and Q2 (t) must be cross-combined according to I (t) = I1 (t) + I2 (t) and Q (t) = Q1 (t) + Q2 (t). The phases of the local
IF oscillators must be chosen to be ϕZ 1 = ϕZ 2 = ϕZ = −ϕO.

Eq. (2.44) on Page 28,

Es (t) = Ês cos (ωs + ϕs) = Ês,r cosωst− Ês,i sinωst = <
{(
Ês,r + j Ês,i

)
e jωst

}
, (5.132a)

Ês,r = Ês cosϕs, Ês,i = Ês sinϕs . (5.132b)

The optical signal field is split, superimposed with an optical local oscillator EO (t) = ÊO cos (ωO + ϕZ)
(EO (t) = −ÊO sin (ωO + ϕZ)) and detected by photodetectors PD 1 (PD 2). The PD have a sensitivity
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S = ηe/ (hfs), see Eq. (5.17) on Page 113. The respective photocurrents have an IF component at
angular frequency ωZ = ωs − ωO and are in proportion to i1 (t) ∼ iZ cos (ωZ + ϕs − ϕO) (i2 (t) ∼
iZ sin (ωZ + ϕs − ϕO)) with IF amplitude iZ = SÊOÊs. The LO power PO = 1

2 Ê
2
O is assumed to be

much larger than the signal power Ps = 1
2 Ê

2
s � PO, so only the LO contributes shot noise, leading to

noise currents n1,2 (t). The noise powers n2
1,2 are specified for the IF band in a bandwidth 2B. We find

for the total PD currents

i1 tot (t) = 1
4SÊ

2
O + 1

2 iZ cos (ωZt+ ϕs − ϕO) + n1 (t) , i1(t) = i1 tot (t)− 1
4SÊ

2
O , (5.133a)

i2 tot (t) = 1
4SÊ

2
O + 1

2 iZ sin (ωZt+ ϕs − ϕO) + n2 (t) , i2(t) = i2 tot (t)− 1
4SÊ

2
O , (5.133b)

iZ = SÊOÊs, n2
1,2 = 2e

(
1
4SÊ

2
O

)
× 2B , PO = 1

2 Ê
2
O, Ps = 1

2 Ê
2
s , Ps � PO . (5.133c)

Due to the specific photodiode properties, see the discussion in Sect. 5.4 on Page 140, the angular sum
frequency ωs + ωO does not exist.

As discussed in Sect. 5.4.1 on Page 144, a real-world implementation would employ balanced photode-
tectors, so that the DC part is removed from the resulting photocurrents i1,2 (t). With real and imaginary
signal parts given in Eq. (5.132b) we then write

i1 (t) = 1
2SÊO

[
Ês,r cos (ωZt− ϕO)− Ês,i sin (ωZt− ϕO)

]
+ n1 (t) , Ês,r = Ês cosϕs , (5.134a)

i2 (t) = 1
2SÊO

[
Ês,i cos (ωZt− ϕO) + Ês,r sin (ωZt− ϕO)

]
+ n2 (t) , Ês,i = Ês sinϕs . (5.134b)

By comparing with Eq. (5.132) on Page 147 we see that i1 (t) and i2 (t) represent the down-converted real
part and the imaginary part of the complex transmitted signal, respectivley.

For discriminating between optical and electrical reception, we use in the following the word “detec-
tion” if electrical reception is meant.

Incoherent detection With incoherent detection, using an electrical square-law detector and subse-
quent filtering, we measure the average powers i21,2 (t) in a signal bandwidth B,

i21 (t) =
(

1
2SÊOÊs

)2
1
2 [1 + cos (2ωZt+ 2ϕs − 2ϕO)] + n2

1 (t), n2
1 = 2e

(
1
4SÊ

2
O

)
×B , (5.135a)

i22 (t) =
(

1
2SÊOÊs

)2
1
2 [1− cos (2ωZt+ 2ϕs − 2ϕO)] + n2

2 (t), n2
2 = 2e

(
1
4SÊ

2
O

)
×B . (5.135b)

However, this averaging is done to remove the spectrum centred at the harmonic angular frequency
2ωZ , while the baseband signal spectrum must remain untouched. For heterodyne reception this is only
possible, if the IF is larger than the signal bandwidth, fZ > B, such excluding intradyne reception with
a low IF, fZ < B.

For optical heterodyne reception and high IF, specifically for fZ > 3B as discussed in Sect. 5.4.1 and
Fig. 5.25 on Page 143, we then calculate the shot noise limited SNR in the baseband width B,

γBB-het qu, 1,2 =
1
4S

2Ê2
OÊ

2
s

1
2

2e
(

1
4SÊ

2
O

)
×B

=
ηPs/2

hfOB
for Ps = 1

2 Ê
2
s . (5.136)

Phases are not evaluated. Due to the power splitter in the front end of the receiver Fig. 5.27 on Page 147,
the input signal power for each PD is halved, Ps → Ps/2. Obviously, one PD would be enough. Then
the power splitter can be dropped, and comparing to Eq. (5.123) on Page 143 we see that the SNR are
identical, γBB-het qu, 1,2 (Ps/2→ Ps) = γBB-het qu.

With optical homodyne reception, ωZ = 0 holds, but the LO phase ϕO must be in a fixed relation to
the average signal phase ϕs, choosing for instance ϕO = 0 if ϕs = 0. Locking of the LO to the average
phase to the optical signal requires an optical phase-locked loop (OPPL). Phase-locking of optical signals
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is principally possible and has been done previously. However, because of the high carrier frequency, it is
much more complicated than an electrical PLL. For optical homodyne reception, Eq. (5.134) becomes

i1 (t) = 1
2SÊOÊs,r + n1 (t) , Ês,r = Ês cosϕs , (5.137a)

i2 (t) = 1
2SÊOÊs,i + n2 (t) , Ês,i = Ês sinϕs . (5.137b)

Obviously, for the down-converted signal the photocurrents i1 and i2 recover the I and the Q-component
(or real and imaginary part) of the optical signal, respectively.

With two electrical square-law detectors and disregarding the noise contribution (n1 = n2 = 0), we
receive the modulated signal power irrespective of the actual modulated signal phase ϕs,

Ps (t) =
i21 (t) + i22 (t)

S2PO
, ϕs (t) = arctan

i2 (t)

i1 (t)
for Ps = 1

2 Ê
2
s , PO = 1

2 Ê
2
O . (5.138)

The shot noise limited SNR at any of the outputs i1 or i2 with optimally adjusted phases ϕs,1 = 0 or

ϕs,2 = π/2 (assuming ϕO = 0) and the noise powers n2
1,2 of Eq. (5.135) in the baseband width B is

γhom qu, 1,2 =
1
4S

2Ê2
OÊ

2
s

2e
(

1
4SÊ

2
O

)
×B

=
ηPs/2
1
2hfOB

= 2γBB-het qu, 1,2 for Ps = 1
2 Ê

2
s . (5.139)

As before, one PD would be enough. Then the power splitter can be dropped, and comparing to Eq. (5.130)
on Page 146 we see that the SNR are identical, γhom qu, 1,2 (Ps/2→ Ps) = 1

2γhom qu. However, if both

current outputs were added, the electrical signal power was (i1 + i2)
2
. At best, this could contribute

double the maximum power for one output, because with ϕs = π/4 a compromise phase has to be found.
But now two PD are involved, so the noise power doubles, and therefore the electrical baseband SNR for
the combined output currents would be

γhom qu, 1+2 =
1
4S

2Ê2
OÊ

2
s × 2

2× 2e
(

1
4SÊ

2
O

)
×B

=
ηPs
hfOB

= 1
2γhom qu, 1,2 for Ps = 1

2 Ê
2
s . (5.140)

The SNR in Eq. (5.140) is worse than that of Eq. (5.139) by a factor of two, because both PD are used,
and in that sense must be compared directly to Eq. (5.130) on Page 146, γhom qu, 1+2 = 1

2γhom qu.
Equations (5.135) reveal that in contrast to optical homodyne reception, an optical heterodyne receiver

with electrical square-law detection can evaluate the magnitude of the received optical field only, while
its phase goes unnoticed: There is no reference phase available. If both the optical amplitude Ês and the
phase ϕs (or real part Ês,r = Ês cosϕs and imaginary part Ês,i = Ês sinϕs) are to be received, coherent
detection must be employed.

Coherent detection With an optical intradyne receiver according to Fig. 5.27 on Page 147 having a
low IF fZ < B, harmonic filtering of the output currents proves to be impossible. Instead, we employ
coherent detection with an electrical IQ-demodulator as in Fig. 2.7(b) on Page 29, but without the splitter
Σ, upper right in Fig. 5.27. The i1,2-terminals of the optical intradyne receiver output are connected to
the appropriate input terminals of the electrical IQ-demodulator, where the currents i1,2 in Eq. (5.134)
on Page 148 are mixed (multiplied) with the in-phase and quadrature component of a local electrical
oscillator at an IF fZ . The in-phase and quadrature signals at the output of IQ-mixer 1 are

I1 (t) = i1 (t) cos (ωZt+ ϕZ 1)

= 1
4 iZ cos (ϕs − ϕO − ϕZ 1) + 1

4 iZ cos (2ωZt+ ϕs − ϕO + ϕZ 1) + n1 cos (ωZt+ ϕZ 1) , (5.141a)

Q1 (t) = −i2 (t) sin (ωZt+ ϕZ 1)

= − 1
4 iZ cos (ϕs − ϕO − ϕZ 1) + 1

4 iZ cos (2ωZt+ ϕs − ϕO + ϕZ 1)− n2 sin (ωZt+ ϕZ 1) . (5.141b)
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A similar procedure applies for a second electrical IQ-demodulator having the same LO frequency fZ ,
but a different LO phase setting, lower right in Fig. 5.27. The in-phase and quadrature signals at the
output of IQ-mixer 2 are

I2 (t) = i1 (t) sin (ωZt+ ϕZ 2)

= − 1
4 iZ sin (ϕs − ϕO − ϕZ 2) + 1

4 iZ sin (2ωZt+ ϕs − ϕO + ϕZ 2) + n1 sin (ωZt+ ϕZ 2) , (5.142a)

Q2 (t) = i2 (t) cos (ωZt+ ϕZ 2)

= 1
4 iZ sin (ϕs − ϕO − ϕZ 2) + 1

4 iZ sin (2ωZt+ ϕs − ϕO + ϕZ 2) + n2 cos (ωZt+ ϕZ 2) . (5.142b)

In both IQ-mixers the electrical LO has to be phase-locked to the average phase ϕs of the IF data. For
IQ-mixer 1 (2) we choose ϕZ 1 + ϕO = 0 (ϕZ 2 + ϕO = π), form the difference signals I = I1 − Q1

(Q = I2 − Q2), respectively, thereby eliminate the harmonic spectrum centered at 2fZ , and recover the
transmitted in-phase and quadrature data I (t) and Q (t) within a signal bandwidth B,

I = I1 −Q1 = 1
2 iZ cosϕs + n1 cos (ωZt+ ϕZ 1) + n2 sin (ωZt+ ϕZ 1) for ϕZ 1 + ϕO = 0 , (5.143a)

Q = I2 −Q2 = 1
2 iZ sin ϕs + n1 sin (ωZt+ ϕZ 2)− n2 cos (ωZt+ ϕZ 2) for ϕZ 2 + ϕO = π , (5.143b)

iZ = SÊOÊs, n2
1,2 = 2e

(
1
4SÊ

2
O

)
×B , PO = 1

2 Ê
2
O, Ps = 1

2 Ê
2
s , Ps � PO . (5.143c)

Intradyne reception limit

The shot-noise limited SNR for optical IQ intradyne reception and electrical IQ homodyne detection
relates for both the electrical I and Q-signals of Eq. (5.143) the respective average signal powers PS I,Q =
1
4 i

2
Z

1
2 for an equally distributed random signal phase ϕs (cos 2ϕs = 0, sin 2ϕs = 0) to the noise power

PR I,Q = 1
2n

2
1 + 1

2n
2
2 = 2 × 1

2 × 2e
(

1
4SÊ

2
O

)
× B in the baseband width B. For the SNR in both the

independent I and Q-channels we therefore find

γintra qu I,Q =
PS I,Q
PRI,Q

=
1
4S

2Ê2
OÊ

2
s

1
2

2e
(

1
4SÊ

2
O

)
×B

=
ηPs/2

hfOB
= γBB-het qu, 1,2 . (5.144)

Not unexpectedly, the intradyne SNR per I and Q-channel equals the incoherently detected baseband
heterodyne SNR for a high IF, see Eq. (5.136) on Page 148. Because the optical signal Eq. (5.132) on
Page 147 is split into its real part Ês,r = Ês cosϕs and its imaginary part Ês,i = Ês sinϕs, the SNR of
Eq. (5.144) corresponds to the SNR of Eq. (5.124) on Page 143, if the signal power is properly replaced,
Ps → Ps/2.

If the I and Q-channels carry the same information, we could add the I and Q-signals in Eq. (5.143)
if ϕZ 1 = ϕZ 2 was chosen. This doubles the signal amplitude, where again random signal phases ϕs are
assumed, and it doubles the noise power. Therefore the SNR doubles as compared to Eq. (5.144),

γintra qu I+Q =
PS I+Q
PRI+Q

=
4× 1

4S
2Ê2

OÊ
2
s

1
2

2× 2e
(

1
4SÊ

2
O

)
×B

=
ηPs
hfOB

= γBB-het qu = 2γdir qu . (5.145)

In this case, the shot-noise limited SNR equals the case for simple optical heterodyne reception and
incoherent square-law detection as in Eq. (5.124) on Page 143.

5.4.4 Signal quality metric for QAM reception

Sets of different M -ary modulation schemes such as QPSK, 8PSK, 16PSK and 1616QAM were discussed
in Sect. 2.4.2 and displayed in Fig. 2.13(b) on Page 40. For these modulation formats the Q-factor and its
relation to BER is not appropriate any more. A new metric has to be defined, namely the error vector
magnitude (EVM), which assesses the quality of communication. The EVM expresses the difference
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between the expected complex voltage of a demodulated symbol and the value of the actually received
symbol. As with the Q-factor, a relation to BER can be established46.
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In the above paper [1], equation (4) contains an error. Equation
(4) correctly reads:

BER ≈
(

1 − L−1
)

log2 L
erfc

[√
3 log2 L(
L2 − 1

) 1

(kEVMm)2 log2 M

]
. (4)
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Additionally, the paper should include the following Appendix.

APPENDIX

The OSNR as used in our equations is the optical signal-to-noise
power ratio measured in the same bandwidth BO and in the same
polarization as the signal power. This is equivalent to the definition of
the electrical SNR and differs from the usual measurement practice,
where the optical signal-to-noise power ratio OSNRref is the total sig-
nal power (measured in both polarizations) and the total noise power
from both polarizations measured in a reference bandwidth Bref . The
reference bandwidth thereby is defined by a fixed wavelength range
�λref = Brefc/λ2

ref = 0.1 nm (vacuum speed of light c) centered at
a reference wavelength λref .

The OSNR definition in our equation and the OSNRref definitions
are related by

OSNR = 2Bref

p · BO
OSNRref (6)

with p = 1 for a single polarization signal and p = 2 for
a polarization multiplexed signal (see R.J. Essiambre et al; J. of
Lightwave Technol., vol. 28, no. 4, pp. 662 ff., April 2011).

If there are signal or noise correlations between the two transmitted
polarizations, the applicability of our formulae has to be re-checked.
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Error Vector Magnitude as a Performance Measure
for Advanced Modulation Formats

Rene Schmogrow, Bernd Nebendahl, Marcus Winter, Arne Josten, David Hillerkuss, Swen Koenig,
Joachim Meyer, Michael Dreschmann, Michael Huebner, Christian Koos, Juergen Becker, Wolfgang Freude, and

Juerg Leuthold

Abstract—We examine the relation between optical signal-to-
noise ratio (OSNR), error vector magnitude (EVM), and bit-error
ratio (BER). Theoretical results and numerical simulations are
compared to measured values of OSNR, EVM, and BER. We con-
clude that the EVM is an appropriate metric for optical channels
limited by additive white Gaussian noise. Results are supported
by experiments with six modulation formats at symbol rates of 20
and 25 GBd generated by a software-defined transmitter.

Index Terms—Advanced modulation formats, bit-error ratio
(BER), error vector magnitude (EVM), software defined trans-
mitter.

I. INTRODUCTION

C OHERENT optical transmission systems and advanced
modulation formats such as -ary quadrature amplitude

modulation (QAM) are establishing quickly [1]. To encode
these formats a variety of new optical modulator concepts have
been introduced [2]. Among them are modulators dedicated
to a particular modulation format [3] as well as novel soft-
ware-defined optical transmitters that allow encoding of many
modulation formats at the push of a button [4], [5]. In light of
the capabilities to encode such advanced modulation formats
there is a need to reliably judge the quality of the encoded
signals. In laboratory experiments so far most receivers employ
offline digital signal processing (DSP) at much reduced clock
rates. This offline processing makes it very time consuming
to reliably compute the bit error ratio (BER), especially if
the signal quality is high. As a consequence, a faster — yet
reliable — performance measure is needed, in particular when
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investigating wavelength division multiplexing (WDM) [6] or
multicarrier systems [7].
Traditionally, the -factor metric is well established for

on-off keying (OOK) optical systems. To estimate BER from
, marks and spaces in the detected photocurrent are as-

sumed to be superimposed with additive white Gaussian noise
(AWGN), the probability density of which is fully described by
its mean and variance. A large leads to a small BER.
Unfortunately, the method cannot be simply transferred to

QAM signals, where the optical carrier is modulated with mul-
tilevel signals both in amplitude and phase. Instead, the error
vector magnitude (EVM) is employed. It describes the effective
distance of the received complex symbol from its ideal posi-
tion in the constellation diagram. If the received optical field
is perturbed by AWGN only, the EVM can be related to BER
and to the optical signal-to-noise ratio (OSNR) [8], [9]. A small
EVM leads then to a small BER. The EVMmetric is standard in
wireless and wireline communications. However, its connection
to BER and OSNR is not well established in optical communi-
cations. Especially one has to discriminate between data-aided
reception, where for measurement purposes the actually sent
data are known, as opposed to nondata-aided reception, where
the received data are unknown. The first case is standard for
BER measurements, while the second case is more common for
real-world receivers (disregarding, e.g., training sequences). For
strongly noisy signals, nondata-aided reception tends to under-
estimate the EVM, because a received symbol could be nearer
to a “wrong” constellation point than to its “right” position.
In this letter we confirm experimentally and by simulations

that the BER can be estimated from EVM data by an analytic
relation [8]. Strictly speaking, this BER estimate is valid for
data-aided reception only, but we found that the method can
be also applied for nondata-aided reception if BER
holds. Further, the EVM can be estimated [9] if the OSNR has
been measured. Both estimates are valid for systems limited
by optical AWGN. To support our findings we compare mea-
sured OSNR, EVM and BER for symbol rates of 20 GBd and
25 GBd with calculated BER and EVM estimates for the mod-
ulation formats binary phase shift keying (BPSK), quadrature
PSK (QPSK), 8PSK, 16QAM, 32QAM, and 64QAM.

II. ERROR VECTOR MAGNITUDE

A. EVM Definition
Advanced modulation formats such as -ary QAM encode

a data signal in amplitude and phase of the optical electric field.
The resulting complex amplitude of this field is described by
points in a complex constellation plane. Fig. 1(a) depicts the

1041-1135/$26.00 © 2011 IEEE
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Fig. 1. Constellation diagram and error vector for a 16QAM signal. (a) Ideal
constellation diagram with an actually transmitted value . The blowup illus-
trates the definition of the th error vector in relation to the actually re-
ceived signal vector and the vector of the transmitted signal. (b) Sim-
ulated constellation diagram with white Gaussian noise, EVM . Color
coding for reception probability of transmitted symbols.

TABLE I
MODULATION FORMAT-DEPENDENT FACTOR FROM (2)

ideal constellation points for a 16QAM signal. The actually re-
ceived signal vector deviates by an error vector from the
ideal transmitted vector . In Fig. 1(b) a simulated noisy con-
stellation is shown. The EVM is defined by a root mean square
of for a number of randomly transmitted data [8] and em-
braces all (linear and nonlinear) impairments:

(1)
The power of the longest ideal constellation vector with mag-
nitude serves for normalization. Other authors use the
average power of all symbol vectors within a con-
stellation leading to EVM . The two EVM normalizations are
related by a modulation format-dependent factor ,

(2)
Table I specifies the -values relating the two definitions for the
modulation formats discussed here.

B. Relations Between OSNR, EVM, and BER

The EVM from (1) can be estimated from OSNR (mea-
sured for instance with an optical spectrum analyzer, OSA) [8]
according to (3). The basic assumptions are that system errors
are mainly due to optical AWGN (neglecting nonlinear effects
and electronic noise), that reception is nondata-aided, and that
quadratic -QAM signal constellations are regarded. With (2)
we find from [9]:

(3)

Fig. 2. Experimental setup for BER and EVM measurements. The optical
signal of a software-defined transmitter [4] generates a choice of six different
modulation formats (three of which are shown) for optical signal-to-noise ratios
adjusted by injecting a variable amount of amplified spontaneous emission
(ASE). After amplification with an erbium-doped fiber amplifier (EDFA), the
OSNR is measured by an optical spectrum analyzer (OSA). The modulation is
decoded by an Agilent optical modulation analyzer (OMA).

The first term in (3), i.e., EVM ), rewrites
(1) and (2) for the case of data-aided reception, and if optical
AWGN is the dominant source of . The remaining terms
account for nondata-aided reception and disappear for large
OSNR. For large numbers of constellation points only the
first few terms in the summation need to be considered.
To estimate a BER from EVM we define as the number of

signal levels identical within each dimension of the (quadratic)
constellation, and as the number of bits encoded into
each QAM symbol. The BER is then approximated by [8]

(4)
For (4), the same limitations as with (3) apply, but in this case
data-aided reception is assumed. If the EVM is not derived by
evaluating (3) but measured directly, the influence of electronic
noise is also included.
The EVM and the -factor are related. In direct detection

OOK systems assuming electrical AWGN with a standard de-
viation for the photocurrent of a mark,
the -factor in the shot-noise limited case, , is defined
in analogy to (1) by

(5)
The -factor represents an electrical signal-to-noise power
ratio and provides for OOK signals a good estimate of the
BER erfc . Conversely, the EVM is based
on electrical fields and thus assesses the BER for a variety of
formats accounting for both optical and electrical AWGN.
In the following, we compare the theoretical predictions (3)

and (4) with numerical simulations and measurements.

III. EXPERIMENTAL SETUP

We measure OSNR, EVM and BER in a software-defined
real-time multi format transmitter setup [4], Fig. 2. We sequen-
tially generate the six complex modulation formats B/Q/8PSK
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Fig. 3. Interdependencies of OSNR, EVM , and BER. Filled symbols represent measurements for a symbol rate of 20 GBd, open symbols for 25 GBd. (a) Mea-
sured (symbols) and calculated [8] EVM (solid lines) as a function of OSNR. For high OSNR levels, the measured plots have an error floor due to the electronic
noise of the transmitter and receiver. The different error floors for Q/8PSK and QAM stem from different factors . The error floor for BPSK is lower because
of transmitter specific properties. (b) Measured (symbols), simulated (dashed lines), and calculated [7] BER (solid lines) as a function of EVM .

and 16/32/64QAM at symbol rates of 20 GBd and 25 GBd
on an external cavity laser (ECL) at 1550 nm. The modulated
carrier is kept at a fixed average power and combined with a
variable noise source (amplified spontaneous emission (ASE)
source with attenuator) to vary the OSNR. An optical spectrum
analyzer (OSA) determines the amplified signal’s OSNR. An
Agilent modulation analyzer (OMA) decodes the modulation
and measures EVM and BER. The insets of Fig. 2 display the
spectrum of the ASE source as well as constellations at 25 GBd
of three selected formats and at best available OSNR.

IV. EXPERIMENTAL RESULTS

In Fig. 3(a) we display the measured EVM for various mea-
sured OSNR values (closed symbols for 20 GBd, open symbols
for 25 GBd). The solid lines represent (3). For OSNR dB
the theoretical prediction coincides with the measurement. Con-
stellations of QAM can be recovered for OSNR dB
only. For OSNR dB the electronic noise dominates so
that (3) does not hold any more. If the electronic noise contribu-
tion would be less, as is the case for systems with lower symbol
rate and consequently smaller bandwidth, the error floor would
be seen at higher OSNR only.
Fig. 3(b) shows the measured BER as a function of the mea-

sured EVM (closed symbols: 20 GBd, open symbols: 25 GBd).
The solid lines represent (4), the dashed lines result from simu-
lations. While measurement and simulation are based on non-
data-aided reception, (4) assumes data-aided detection. Still,
measurement, analytical estimate and simulations coincide for
a large range up to a BER of .
Some more information can be extracted from

Fig. 3(a) and (b). While the 32QAM constellation is not strictly
quadratic, it is nearly so, and hence the estimation quality is
comparable to the one for the quadratic formats. The plots also
show that the EVM depends on the format, as higher-order
formats are more sensitive to noise than others, as predicted
by (3) and (4).
For determining the BER we use a pseudo random

binary sequence. The number of compared bits and the number

of recorded errors were chosen according to the statistical rea-
soning described in [10].

V. CONCLUSION AND OUTLOOK

Complementing the established -factor evaluation for OOK
systems, the EVM is a quality measure for coherent optical
transmission systems with advanced modulation formats. EVM
data can be used to reliably estimate the BER.
Experimental OSNR, EVM, and BER data were compared to

analytical relations and to direct numerical simulations. They
all showed good agreement within the specified limits.
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5.5 Self-Coherent Receiver

In a self-coherent receiver the signal acts simultaneously as its own local oscillator. Because phase sta-
bility must be maintained only over one or several symbol slots, the transmitter laser requirements are
much relaxed. We discuss here a specialized DPSK receiver, and a generalized form for more advanced
modulation formats.

5.5.1 Differential reception

Differential phase shift keying (DPSK) as described in Fig. 2.14 on Page 41 cannot directly be received with
direct detection techniques because the optical phase has to be measured. Therefore a phase-amplitude
converter is employed in form of a Mach-Zehnder interferometer with an optical delay in one arm (delay
interferometer, DI).

As illustrated in Fig. 3.28(b) on Page 97, any optical phase change ∆ϑ is transformed into a change of
the optical field amplitude. Figure 5.28(a) shows a setup schematic. The DI splits the phase-modulated
signal into two paths, in one of which it is delayed by a symbol duration. At the output coupler, the
phase modulated optical field thus interferes with its 1-symbol delayed replica.

This results in destructive (constructive) interference at the destructive (constructive) port whenever
there is no phase change, but in constructive (destructive) interference when a phase change of π happened
between symbols. A balanced direct detector measures the intensity and delivers an electric output signal
which reflects the DPSK coding of the transmitter.

The DI as such converts the phase encoded data signal into an OOK-DB and an OOK-AMI format,
see Fig. 2.15 on Page 44 and Sect. 3.3.3 on Page 100 ff., both of which can be directly detected with
photodiodes.

5.5.2 Self-coherent reception

As with differential reception, a self-coherent receiver uses instead of a local oscillator laser a delayed
version of the signal itself. Compared to conventional differential direct detection receivers, self-coherent
receivers utilize advanced DSP algorithms in electronic circuits for signal processing and demodulation,
which allows a significant reduction of complexity in the optical frontend for the receiver.

In this case, even for DPSK or PSK signals with more than two phase states, only two DI are needed,
and still one can recover phase and intensity of an optical signal at low cost, at the price of a small
penalty in sensitivity. The temporal resolution of these schemes is restricted by the DI time delays,
which, however, can be made tunable.

With such optical DI, tunable in delay from 0 ps to 100 ps, DQPSK signals at 11.7 GBd, 28 GBd and
42.7 GBd can be received. A simplified amplitude recovery is possible when receiving DPSK or PSK
signals which have a constant modulus, e. g., DBPSK, DQPSK, and D8PSK.

A separate amplitude branch method can be used to detect multi-level signals including 8QAM and
16QAM. It needs to be mentioned that a modification in the transmitter is necessary for phase pre-
conditioning. A self-coherent system that detects signals at arbitrary states of polarization was demon-
strated with a 112 Gbit/s PMSK-DQPSK signal47.

47Li, J.; Billah, M. R.; Schindler, P. C.; Lauermann, M.; Schuele, S.; Hengsbach, S.; Hollenbach, U.; Mohr, J.; Koos,
C.; Freude, W.; Leuthold, J.: Four-in-one interferometer for coherent and self-coherent detection. Opt. Express 21 (2013)
13293–13304
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Fig. 5.28. Self-coherent receiver setup (a) Interferometer with 1-symbol delay in one arm, balanced direct photoreceiver,
and differential electrical amplifier (b) Input and output spectra of a 1-symbol delay interferometer. Its transfer function
is periodic. With an RZ-DPSK input spectrum, the spectra at the constructive and destructive output ports belong to an
RZ-DB and an RZ-AMI modulation format, respectively. [After Fig. 2.57 of Ref. † on the Preface page]

5.6 Receiver with optical pre-amplifier

An optical pre-amplifier48 can improve the receiver sensitivity greatly. This is true for both, direct (in-
coherent) and coherent receivers. However, because in the end we always detect powers (or the square
root of powers), be it at optical frequencies as with a direct receiver, or at an intermediate frequency as
with a heterodyne receiver, or in the baseband as with a homodyne receiver, we have the basic problem
that a coherent carrier will be mixing with amplifier noise and that the noise itself becomes rectified.
This will add uncertainties in interpreting the signal correctly, and thus the actual signal-to-noise ratio
is impaired. As we will see, this fundamental impairment is tolerable when compared to the advantages
which can be gained.

The problem of quadratically rectifying a coherent carrier embedded in noise has been discussed in
detail in Appendix C on Page 197 ff., specifically in Eq. (C.24) and Fig. C.2 on Page 201.

5.6.1 Photodetection of signal and noise

An optical amplifier (OA) with single-pass power gain Gs increases a small received power Pe to a
sufficiently large level GsPe such that any electronic amplifier noise 4kFT0GQ/(2eSGsPe) � 1 becomes
unimportant, Eq. (5.80) on Page 132, and shot-noise limited reception would be possible. However, the
amplifier itself is noisy, and this can be described with the help of Sect. 5.2.3 on Page 128 ff. We further
adapt the results displayed in Fig. C.2 on Page 201 to the case of a noisy optical amplifier, Fig. 5.29.

Partial noise currents

The one-sided optical power spectrum ws (f), Fig. 5.29(a), and the photocurrent power partial spectra
wi (f), Fig. 5.29(b)–(d), are displayed under the assumption of a large single-pass amplifier power gain
Gs. For the analytical relations the difference between Gs and Gs − 1 is observed. From Eq. (5.67) on
Page 128 the copolarized ASE noise power is characterized by an approximately constant spectral power

48Most often a receiver with optical pre-amplifier is referred to as a “pre-amplifed receiver”. In fact, (not only) to me this
sounds nonsensical: How can a receiver be amplified? Does it become larger, bigger or heavier? Will it be duplicated (as cells
in genetics)? Certainly not. It is the optical signal to which the quality “amplified” or “larger” has to be attributed, and
not the receiver. Therefore, you better name the device as I chose the section title to be, or call it at least a “pre-amplifier
receiver”. — And as an afterthought: “Literacy involves competence in reading, writing, and interpreting texts of various
sorts. It involves both skill in decoding and higher levels of comprehension and interpretation.” [Cited from Encyclopædia
Britannica, Chicago 2008]
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Fig. 5.29. Signal and co-polarized noise at the output of an optical amplifier with single-pass optical power gain Gs � 1.
(a) One-sided output power spectrum ws(f) of a sinusoidal optical signal with an input amplitude A =

√
2Pe and a

frequency fe, superimposed with ASE noise of spectral density (Gs − 1)w′O (w′O = nspwO, inversion factor nsp, wO = hfe).
The amplifier bandwidth is narrow, BO � fe. Signal and narrowband noise are received with a photodetector. The optical
input signal power Pe leads to a photocurrent i = SGsPe where S = ηe/(hfe) is the sensitivity. (b) One-sided direct current
(DC) power spectrum with photocurrents iS = SGsA2/2 and iR = S (Gs − 1)w′OB. The total DC power is (iS + iR)2.

The integral over half a Dirac function is
∫∞
0 δ (f) df = 1

2
. (c) Carrier-noise interference (d) Noise-noise interference. —

Partial detector spectra wi1, wi2 and wi3 are uncorrelated and may be added. Therefore the total power equals the sum of
the partial powers. The graph corresponds to Fig. C.2 on Page 201.

density in an optical bandwidth BO and by the inversion factor nsp from Eq. (3.40) on Page 70,

PASE, x

BO
= (Gs − 1)w′O , w′O = nspwO , wO = hfe . (5.146)

The photodetection of signal and noise leads to a direct current (DC) component as displayed in
Fig. 5.29(b), to a fluctuating partial photocurrent from carrier-noise interference leading to a constant
spectrum Fig. 5.29(c) inside a bandwidth BO/ 2, and to a fluctuation partial photocurrent from noise-
noise interference with a triangular-shaped spectrum Fig. 5.29(d) and a maximum bandwidth BO. In
detail, we have the following one-sided partial power spectra and their associated noise currents in a
signal bandwidth B < BO:

1. Rectified signal and noise at f = 0 (this is what our eyes register). The one-sided power spectrum
is (half) a Dirac function,

wi 1(f) = (SGsPe + S (Gs − 1)w′OBO)
2

2δ(f)
Gs�1

= 2 (SGs)2
(Pe + w′OBO)

2
δ(f). (5.147a)

The photocurrent fluctuations in a signal bandwidth B are determined by the coherent carrier,
Eqs. (5.43) and (5.45) on Page 122, and by this part of the noise, which is copolarized with the
carrier. Noise has a fundamentally different photon probability distribution49,50 than coherent light,
but can be approximated by a Poisson distribution if only a few photons occupy each mode (this
is the case for a large noise bandwidth BO, a small signal bandwidth B � BO, and a small
total noise power). Therefore we can calculate the current fluctuation from the DC term iS,R =
SGsPe + S (Gs − 1)w′OBO,

|iRD,1|2 = 2e iS,RB = 2e [SGsPe + S (Gs − 1)w′OBO]B
Gs�1

= 2eSGs (Pe + w′OBO)B . (5.147b)

49See Ref. 47 on Page 89. Sect. 6.3.6
50The Bose-Einstein distribution for the probability pNP (NP ) that in thermal equilibrium a number of NP photons

(= bosons) is measured per polarization in a total of m transverse and longitudinal modes for an average number of NP
photons (see Footnote 15 on Page 124)

pNP (NP ) =
(NP +m− 1)!

NP !(m− 1)!

1

(1 +NP /m)m(1 +m/NP )NP
, δN2

P = (NP −NP )2 = NP︸︷︷︸
Particle
aspect:
Poisson

+
NP

2

m
.︸ ︷︷ ︸

Wave aspect:
Exponential for m=1

If only one polarization and one transverse mode is regarded (e. g., in a polarization-maintaining single-mode fibre), then m
corresponds to the number of longitudinal modes m = ML = BOτ as calculated in Eq. (3.4) on Page 51. The observation
time τ = 1/B is determined by the signal bandwidth, and usually the condition B � BO is fulfilled so that m� 1 holds.
For moderate powers (moderate average numbers of photons NP , excluding the explosion of a fusion bomb), the condition
NP
/
m� 1 is met, so that ASE noise (and also LED radiation) approximates a Poisson distribution very well.



158 CHAPTER 5. OPTICAL RECEIVERS

2. Mixing of signal at fe (optical amplitude
√

2GsPe =
√
GsA) and noise “sidebands”, which are

copolarized with the signal,

wi 2(f) = 4SGsPe S (Gs − 1)w′O
Gs�1

= 4 (SGs)2
Pew

′
O for 0 ≤ f ≤ BO/2 . (5.148a)

The photocurrent fluctuations represent the interference of coherent light and ASE noise, |iRD,2|2 =∫ B
0
wi 2(f) df ,

|iRD,2|2 = 4SGsPe S (Gs − 1)w′OB
Gs�1

= 4 (SGs)2
Pew

′
OB for 0 ≤ B ≤ BO/2 . (5.148b)

3. As before, we regard only the noise “lines” which are copolarized with the coherent carrier. Mixing
of noise “sidebands” leads to the highest spectral density 2 (SGs)2

w2
OBO at f = 0 because then the

number of immediately adjacent noise “lines” is maximum. The spectral density decays linearly to
zero, because at f = BO there is only “one fitting pair of noise lines”,

wi 3(f) = 2S2 (Gs − 1)
2
w′ 2O (BO − f)

Gs�1
= 2 (SGs)2

w′ 2O (BO − f) for 0 ≤ f ≤ BO . (5.149a)

The photocurrent fluctuations represent the noise-noise interference, |iRD,3|2 =
∫ B

0
wi 3(f) df ,

|iRD,3|2 = 2S2 (Gs − 1)
2
w′ 2O

(
BO −

B

2

)
B
Gs�1

= 2 (SGs)2
w′ 2O

(
BO −

B

2

)
B for 0 ≤ B ≤ BO .

(5.149b)

Shot (or quantum) noise, carrier-noise mixing, and noise-noise mixing products fall into the signal base-
band 0 ≤ f ≤ B. For a sufficiently large gain Gs � 1 the shot (or quantum) noise term |iRD,1|2 can be

neglected compared to the two interference terms, because it increases with Gs only, while |iRD,2|2, |iRD,3|2
increase with G2

s ,

|iRD,1|2 � |iRD,2|2, |iRD,3|2 for Gs � 1 . (5.150)

5.6.2 Direct pre-amplifier receiver

The signal bandwidth B in relation to the optical amplifier bandwidth BO strongly influences the achiev-
able signal-to-noise power ratio, as will be shown in the following paragraphs.

Direct reception limit with full OA bandwidth

The optical signal bandwidth is usually much smaller than the optical amplifier bandwidth, 2B � BO,
and without limiting the amplifier bandwidth BO, we find for the SNR of a pre-amplifier receiver a much
smaller value than for shot-noise limited reception (Eq. (5.81 on Page 132) without an optical amplifier,

γdir OA ≈

i2S︷ ︸︸ ︷(
SGsPe

)2

4 (SGsPe)SGsw′OB︸ ︷︷ ︸
|iRD,2|2

+ 2 (SGs)2
w′ 2O BOB︸ ︷︷ ︸

|iRD,3|2

=
γ

(1)
dir qu

2nsp

1

1 +
nsp

2γ
(1)
dir qu

BO
2B

, 2B � BO, (5.151a)

γdir OA �
1

2nsp
γ

(1)
dir qu, γ

(1)
dir qu = γ dir qu

∣∣
η=1

=
Pe

2hfeB
, w′O = nspwO , wO = hfe . (5.151b)

It is remarkable that with a pre-amplifier receiver the photodetector’s quantum efficiency η does not
influence the SNR. Even for a large OA bandwidth, the SNR could be better than without an optical
pre-amplifier, as long as electronic amplifier noise |i′R|2 in Eq. (5.80) on Page 132 does not yet dominate,

i. e., if with γdir OA � γ
(1)
dir qu/(2nsp) we still have |iRD,3|2 ≈ |i′R|2.
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Direct reception limit with matched OA bandwidth

If an optical filter reduces the OA bandwidth BO = 2B to the optical signal bandwidth 2B, the SNR
improves greatly. We find the SNR from Eq. (5.151b),

γdir OA qu =
1

2nsp
γ

(1)
dir qu

1

1 +
nsp

2γ
(1)
dir qu

=
γ
(1)
dir qu�1

1

2nsp
γ

(1)
dir qu =

1

2nsp

Pe
2hfeB

, 2B = BO . (5.151c)

With an ideal, fully inverted pre-amplifier (nsp = 1) a direct receiver has — even for small received optical
powers Pe — an SNR, which is as high as half the theoretical quantum limit Eq. (5.81) on Page 132.

5.6.3 Coherent pre-amplifier receiver

The sensitivity of coherent receivers can be improved by an optical pre-amplifier, too, especially if the
power PO of the local oscillator is limited, and neither its relative intensity noise nor its phase noise
can be ignored, not even with a balanced receiver, see Sect. 5.4.1 on Page 144. Figure 5.30 schematically
displays the relevant power spectra. The optical amplifier noise spectrum (shaded blue) has a width BO
that is usually much broader than the optical signal bandwidth 2B. For the present discussion we assume
a real baseband signal so that upper and lower optical signal sidebands are correlated, see Eq. (2.36) on
Page 26.

Fig. 5.30. Heterodyne spectra for a pre-amplifier receiver with an optical bandwidth BO (also homodyne spectra for
fO = fs), compare Fig. 5.25 on Page 143. A real signal with bandwidth B is modulated on an optical carrier with frequency
fs. Upper and lower optical sidebands are correlated, see Eq. (2.36) on Page 26. This optical signal together with a local
oscillator (LO) at frequency fO illuminates a photodiode and is down-converted to a current at an intermediate-frequency
fZ = fs − fO. For a direct detection of the IF signal, the condition fZ > B must be fulfilled, otherwise the IF-USB at
negative frequencies overlaps with the IF-LSB for positive frequencies, and this would lead to distortions. However, it would
be even better to choose an IF fZ > 3B. This avoids that mixing products of the IF sidebands, which would fall into a
frequency range 0 ≤ f ≤ 2B, perturb the IF signal band. — Because fZ = fs − fO � BO holds, the low-frequency spectra
of the carrier-noise mixing and of the LO-noise mixing are virtually identical. While an IF filter limits the OA noise to the
signal bandwidth 2B, an optical signal spectrum bandpass centred at fs would reject the optical image spectrum and thus
improve the SNR.

The LO frequency fO is either larger or smaller than the signal carrier frequency fs. Here we choose
fO < fs for heterodyne reception. For homodyne reception, LO and carrier frequency must coincide, i. e.,
both sources must be optically phase-locked. As discussed earlier in Sect. 5.4.3 on Page 146, this can be
also achieved by intradyne reception and subsequent signal processing.

Heterodyne reception limit

For heterodyne reception the spectra and the fluctuations of the partial photocurrents Eq. (5.147)–
Eq. (5.149) on Page 157 have to modified. Signal and LO are uncorrelated and closely neighboured on
an optical frequency scale, so in the mixing process their contributions add up and lead to low-frequency
spectra which virtually coincide in shape and position. However, each occurrence of GsPe in Eq. (5.147)–
Eq. (5.148) has to be replaced by GsPs + PO with the substitution Pe = Ps + PO/Gs, because Ps is
amplified while PO is not. Further, the baseband width B must be replaced by the IF bandwidth 2B.
Other than that, the low-frequency current power spectra remain unchanged. The modified photocurrent
fluctuations come – as before – from signal and LO shot noise (|iRD,1 OA|2), from LO-noise and signal-

noise mixing (|iRD,2 OA|2), and from noise-noise mixing (|iRD,3 OA|2). The third term does not represent
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white noise and therefore requires special treatment. With with Gs � 1 we find for the photocurrent
fluctuations in the IF band fZ −B ≤ f ≤ fZ +B

|iRD,1 OA|2 = 2eSGs
(
Ps +

PO
Gs

+ w′OBO

)
2B , (5.152a)

|iRD,2 OA|2 = 4 (SGs)2

(
Ps +

PO
Gs

)
w′O2B , (5.152b)

|iRD,3 OA|2 = 2 (SGs)2
w′ 2O

∫ fZ+B

fZ−B
(BO − f) df (5.152c)

= 2 (SGs)2
w′ 2O max (BO − fZ , 0) 2B =

{
2 (SGs)2

w′ 2O (BO − fZ) 2B for BO ≥ fZ ,
0 else.

The SNR is calculated in analogy to Eq. (5.122) on Page 143,

γ =
PS
PR

, γIF-het OA =
i2Z
/

2

|iRD,1 OA|2 + |iRD,2 OA|2 + |iRD,3 OA|2 + |i′R|2
. (5.153a)

We substitute the current fluctuations Eq. (5.152) and find

γIF-het OA =

=
1
2S

2GsÊ2
s 2PO[

2eSGs
(
Ps + PO

Gs + w′O BO
)

+ 4 (SGs)2 (
Ps + PO

Gs

)
w′O + 2 (SGs)2

w′ 2O (BO − fZ) + 4kF ′T0GQ
]
2B

=
1

2nsp

Ps
hfO 2B

(5.153b)

× 1
1
2

1
ηnspGs

(
1 + GsPs

PO
+
GsnsphfOBO

PO

)︸ ︷︷ ︸
|iRD,1OA|2

+
(
1 + GsPs

PO

)︸ ︷︷ ︸
|iRD,2OA|2

+ 1
2
nspGshfO

PO
max (BO − fZ , 0)︸ ︷︷ ︸
|iRD,3OA|2

+ kF ′T0

GsPO
hfO
(ηe)2︸ ︷︷ ︸

|i′R|2

.

If we limit the OA bandwidth to the IF bandwidth, BO = 2B, and chose an IF fZ = fs − fO > 3B as
in Fig. 5.30, the noise-noise mixing products fall into the baseband region 0 ≤ f ≤ 2B outside the IF
band, and the |iRD,3 OA|2-term in Eq. (5.153b) can be disregarded. The signal-noise mixing products are

restricted to the range 0 ≤ f ≤ B and need not be considered, which means that the |iRD,2 OA|2-term in
Eq. (5.153b) reduces to one, and only the LO-noise mixing products fall into the IF band. Finally, if the
gain Gs is sufficiently large, both the shot noise term |iRD,1 OA|2 in Eq. (5.153b) and the noise term |i′R|2
from the electronic amplifier can be neglected. Then the SNR reduces to the shot (quantum) noise limit

γIF-het OA qu =
1

2nsp

Ps
2hfOB

= γdir OA =
1

2nsp
γ

(1)
dir qu for fZ = fs − fO > 3B and Gs � 1 . (5.153c)

This SNR is identical as for direct reception with an OA (Eq. (5.151c) on Page 159). As in the case of
heterodyne reception without OA, Eq. (5.124) on Page 143, the SNR with OA increases by a factor of 2 if
a real-valued IF signal is demodulated and transferred to the baseband (upper and lower signal sidebands
are correlated, while the noise “sidebands” are not),

γBB-het OA qu =
1

2nsp

Ps
hfOB

=
1

2nsp
2γ

(1)
dir qu for fZ = fs − fO > 3B and Gs � 1 . (5.154)

With an ideal, fully inverted optical pre-amplifier (nsp = 1), a heterodyne receiver has an SNR, which is
as high as half the theoretical quantum limit Eq. (5.124) on Page 143, and double as large as with a direct
pre-amplifier receiver Eq. (5.151c). This result holds true even if the LO power PO is of the order of the
amplified signal power GsPs. Without an optical pre-amplifier the LO power must be sufficiently large
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(and definitely much larger then the signal power) so that electronic amplifier noise becomes unimportant.
However, when in a heterodyne receiver with pre-amplifier the LO power PO becomes too small, then
the shot noise term |iRD,1 OA|2 in Eq. (5.153b) increases significantly. As said before, the signal-noise

fluctuation GsPs/PO in the |iRD,2 OA|2-term does not fall into the IF band and can be filtered out before
demodulating the IF signal.

Homodyne reception limit

For homodyne reception, the optical signal is down-converted directly to the baseband, the spectral width
of which equals the signal bandwidth B. Therefore the noise currents Eq. (5.152) on Page 160 have to be
modified accordingly,

|iRD,1 OA|2 = 2eSGs
(
Ps +

PO
Gs

+
Gs − 1

Gs
w′OBO

)
B , (5.155a)

|iRD,2 OA|2 = 4 (SGs)2

(
Ps +

PO
Gs

)
Gs − 1

Gs
w′OB , (5.155b)

|iRD,3 OA|2 = 2 [S (Gs − 1)]
2
w′ 2O

∫ B

0

(BO − f) df = 2 [S (Gs − 1)]
2
w′ 2O

(
BO −

B

2

)
B . (5.155c)

The SNR is calculated in analogy to Eq. (5.153) on Page 160, but the average electrical signal power is
PS = i2Z and not PS = i2Z/2 as before,

γ =
PS
PR

, γhom OA =
i2Z

|iRD,1 OA|2 + |iRD,2 OA|2 + |iRD,3 OA|2 + |i′R|2
. (5.156a)

We substitute the current fluctuations Eq. (5.155) and find the SNR for a homodyne receiver with optical
pre-amplifier,

γhom OA =

=
S2GsÊ2

s 2PO[
2eSGs

(
Ps + PO

Gs + w′O BO
)

+ 4 (SGs)2 (
Ps + PO

Gs

)
w′O + 2 (SGs)2

w′ 2O
(
BO − B

2

)
+ 4kF ′T0GQ

]
B

=
1

2nsp

Ps
1
2hfOB

(5.156b)

× 1
1
2

1
ηnspGs

(
1 + GsPs

PO
+

nspGshfOBO
PO

)︸ ︷︷ ︸
|iRD,1OA|2

+
(
1 + GsPs

PO

)︸ ︷︷ ︸
|iRD,2OA|2

+ 1
2
nspGshfO

PO

(
BO − B

2

)︸ ︷︷ ︸
|iRD,3OA|2

+ kF ′T0

GsPO
hfO
(ηe)2︸ ︷︷ ︸

|i′R|2

.

With a sufficiently large gain, Gs � 1, and observing that usually PO � Ps, i. e., that the signal power in
front of the OA is much smaller than the LO power, the shot noise term |iRD,1 OA|2 and the amplifier noise

term |i′R|2 become unimportant. However, because the noise-noise mixing products of the |iRD,3 OA|2-term
lie in the signal baseband and cannot be removed by IF filtering as with heterodyne reception, appropriate
optical filtering is crucial, BO = 2B. If then the LO power is much larger than the relevant ASE noise,
i. e., if PO � nspGshfO 2B, the noise-noise mixing term can be also neglected. What remains is the SNR

γhom OA =
1

2nsp

Ps
1
2hfOB

1

1 + GsPs
PO

for Gs � 1, BO = 2B, PO � max (Ps, nspGshfO 2B) . (5.157)

If in addition we can guarantee that the LO power is much larger than the amplified signal power (this
could turn out to be difficult!), i. e., if PO � GsPs, we end up with the maximum achievable SNR for a
pre-amplifier homodyne receiver,

γhom OA qu =
1

2nsp

Ps
1
2hfOB

for Gs � 1, BO = 2B, PO � max (GsPs, nspGshfO 2B). (5.158)
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Chapter 6

Optical communication systems

6.1 Transmission impairments

There are numerous influences, which impair a fibre-optic transmission. A few were mentioned already
and displayed in Fig. 1.6 on Page 6. Most important is attenuation of light guided in a glass fibre. This can
be compensated with (noisy) optical amplifiers. Next is dispersion as described in Sect. 2.2 on Page 18 ff.,
which can be equalized with dispersion compensating fibres. Modern coherent receivers in combination
with digital signal processing can even mitigate impairments due to nonlinearities in the fibre. Inter-
symbol interference as explained in Fig. 1.5(b) on Page 5 can be avoided by proper signal shaping at the
transmitter, or by equalization at the receiver as in Fig. 5.19 on Page 133.

In the following two section we discuss the noise figure of optical amplifiers and of links with concate-
nated amplifiers, and finally give a few results on signal shaping.

6.2 Noise figure of optical amplifiers and links

An optical amplifier (OA) — like any amplifier — degrades the signal-to-noise power ratio (SNR), because
amplified spontaneous emission (ASE) adds noise1 to its output signal. The amount of ASE noise power
PASE,x per mode, which is copolarized with the signal, was specified in Eq. (5.67) on Page 128. Now we
derive the OA noise figure in analogy to the procedure Eq. (5.62) on Page 126 ff. for electronic amplifiers.

6.2.1 Noise figure of a single optical amplifier

The noise figure is defined as the ratio SNR1/ SNR2 of SNR at the amplifier input and output. This SNR
relates the optical signal power Ps1,2 and optical noise power Pr1,2 taken at the amplifier input and output,
respectively. The noise figure is defined by power measurements and is thus a universal characteristic of
an OA, irrespective of the type of reception (direct, heterodyne, homodyne, or intradyne). Because we
disregard optical power reflection, a discrimination between an available optical SNRv1 = Psv1/Prv1 and
an actual optical SNR1 = Ps1/Pr1 is not required. Transducer gain and available gain according to
Eq. (5.56) on Page 125 coincide with the single-pass gain, Γü = Γv = Gs = Ps2/Ps1. The definition for
the noise figure F is then

F =
SNR1

SNR2
=

Ps1
Pr1

/
Ps2
Pr2

=
Pr2
GsPr1

=
polarized output noise power in BO

amplified equiv. pol. input noise power in BO
. (6.1)

We define an SNR γ
(1)
dir qu and a sensitivity S(1) for an ideal photodetector quantum efficiency η = 1.

According to Eq. (5.81) on Page 132 and following Eq. (5.151a) on Page 158, the quantum noise limited

1For a very brief introduction to optical amplifier noise, see Ref. 17 on Page 6. Sect. 8.1.3 p. 365
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SNR1 at the OA input is

SNR1 = γ
(1)
dir qu = γ dir qu

∣∣
η=1

=
Pe

2wOB
, wO = hfe , S(1) = S|η=1 =

e

hfe
. (6.2)

The approximate SNR at the OA output, Eq. (5.151) on Page 158 is re-written to include also the shot
noise term. Taking regard of all OA noise sources |iRD,1,2,3|2, we write(

S(1)GsPe
)2

SNR2
= |iRD,1|2 + |iRD,2|2 + |iRD,3|2

= 2e
[
S(1)GsPe + S(1) (Gs − 1)w′OBO

]
B + 4S(1)GsPe S(1) (Gs − 1)w′OB

+ 2
[
S(1)Gs (Gs − 1)w′O

]2(
BO − B

2

)
B (6.3)

The noise figure F is calculated according to the definition Eq. (6.1). It consist of three terms, namely
the shot noise figure Fshot, the noise figure Fsn due to mixing of signal and copolarized noise, and the
noise figure Fnn resulting from mixing copolarized noise with noise2,

F =
SNR1

SNR2
=

1

Gs

[
1 +
Gs − 1

Gs
w′OBO
Pe

]
︸ ︷︷ ︸

shot noise: Fshot

+ 2
Gs − 1

Gs
w′O
wO︸ ︷︷ ︸

signal-noise: Fsn

+
Gs − 1

Gs
w′O(BO −B/2)

Pe

Gs − 1

Gs
w′O
wO︸ ︷︷ ︸

noise-noise: Fnn

. (6.4)

For a transparent, i. e., nonexisting OA with Gs = 1, there is no additional noise and F = 1. Spontaneous
emission factor nsp and gain Gs are linked. If the gain is larger than but close to one, then the spontaneous
emission factor is very large. This expression for the noise factor depends on the input signal power Pe.
However, simplifications apply for the following typical data: Signal frequency fe = 193.4 THz, OA
bandwidth BO ≈ 3 THz ≥ 2B, w′OBO � Pe, noise power w′OBO ≈ 2hfeBO = 0.77µW =̂ −31 dBm
(F ≈ 4 =̂ 6 dB), Pe ' −20 dBm, Gs ≥ 2. Under these assumptions the red-coloured terms can be
neglected, while the blue-coloured terms remain,

F ≈ Fshot + Fsn ≈
1

Gs
+ 2
Gs − 1

Gs
w′O
wO

, 1 < nsp <∞, w′O = nspwO , wO = hfe . (6.5)

If in addition the amplifier gain is large (in practice we have Gs ≈ 100 =̂ 20 dB), the noise figure due
to shot noise can be neglected, and we end up with the simple relation for the noise figure of an optical
amplifier operated at a signal frequency fe,

F ≈ Fsn ≈ 2nsp , Gs � 1 , 1 < nsp <∞, w′O = nspwO , wO = hfe . (6.6)

For a fully inverted, ideal optical amplifier the minimum noise figure is F = 2 =̂ 3 dB. Real-world
amplifiers have noise figures of (4 . . . 8) dB.

This noise figure as derived above cannot be calculated by referring to the ASE noise power Eq. (5.67)
on Page 128 and letting Pr2 = PASE,x for BO = 2B, because we cannot measure a corresponding input
noise power without any optical signal: It is the signal which gives rise to quantum noise, and without
signal there would be only thermal noise that is of irrelevant magnitude, kT0 � hfe. However, knowing
the noise figure F = 2nsp, we can calculate a fictitious equivalent input power Pr eq,x of copolarized noise
according to the definition Eq. (6.1), Pr1 = Pr2/ (GsF ),

Pr eq,x =
PASE,x

GsF
=

(Gs − 1)nspwOBO
Gs2nsp

=
Gs − 1

Gs
wO 2B

2

Gs�1
= hfeB . (6.7)

In one polarization and per signal bandwidth B we have to provide one fictitious, non-extractable noise
photon with energy hfe at the OA input to represent the unavoidable quantum fluctuations.

2R. Bonk, T. Vallaitis, W. Freude, J. Leuthold, R. V. Penty, A. Borghesani, I. F. Lealman: Linear semiconductor optical
amplifiers. In: H. Venghaus, N. Grote (Eds.): Fibre optic communication — Key devices. Heidelberg: Springer-Verlag 2012,
Chapter 12 pp. 512–571. Eq. (12.30) p. 543
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We can apply the recipe Eq. (6.1), (6.2) for calculating the OA noise figure also for the case of
heterodyne reception (Eq. (5.124) on Page 143, Eq. (5.154) on Page 160), and for homodyne reception
(Eq. (5.130) on Page 146, Eq. (5.158) on Page 161),

SNR1 : γ
(1)
dir qu =

Pe
2hfeB

γ
(1)
BB-het qu =

Ps
hfOB

γ
(1)
hom qu =

Ps
1
2hfOB

SNR2 : γdir OA qu =
1

2nsp

Pe
2hfeB

γBB-het OA qu =
1

2nsp

Ps
hfOB

γhom OA qu =
1

2nsp

Ps
1
2hfOB

(6.8a)

and each time we find the same result for the noise figure of an optical amplifier,

F =
SNR1

SNR2
= 2nsp . (6.8b)

6.2.2 Noise figure of an optical amplifier link

In specific network applications, it is of interest to cascade optical amplifiers in a link for compensating
fibre losses along a transmission distance as in Fig. 1.6 on Page 6. We arrange a series of N links, each

consisting of an amplifier with noise power spectral density w
(n)
O and single-pass gain Gn ≥ 1, followed by

a bandpass filter BO = 2B and a fibre length with a power gain 0 < gn ≤ 1. The total gain of this link is

Gtot =

N∏
n=1

Gngn . (6.9)

We assume the realistic scenario w′OBO � Pe and approximate the SNR of Eq. (6.3) on Page 6.3 by the
first two terms. The SNR at the output of the N links is(
S(1)GtotPe

)2
SNR

(Gngn)
N

= 2eS(1)GtotPeB + 4
(
S(1)GtotPeB

)
S(1)B (6.10)

×
[
(G1 − 1)w

(1)
O g1

Gtot

G1g1
+ (G2 − 1)w

(2)
O g2

Gtot

G1g1 G2g2
+ . . .+ (GN − 1)w

(N)
O gN

Gtot

Gtot

]
.

Together with SNR1 from Eq. (6.2) we find the noise figure of the concatenated links,

F
(Gngn)
N =

SNR1

SNR
(Gngn)
N

=
1

Gtot
+

(
G1 − 1

G1

w
(1)
O

wO
+

1

G1g1

G2 − 1

G2

w
(2)
O

wO
(6.11)

+
1

G1g1 G2g2

G3 − 1

G3

w
(3)
O

wO
+ . . .+

1∏N−1
n=1 Gngn

GN − 1

GN
w

(N)
O

wO

)
.

With the partial noise figures F
(n)
sn as used in Eq. (6.5) on Page 164, we find the total link noise figure

F
(Gngn)
N =

1

Gtot
+

(
F (1)

sn +
F

(2)
sn

G1g1
+

F
(3)
sn

G1g1 G2g2
+ . . .+

F
(N)
sn∏N−1

n=1 Gngn

)
, F (n)

sn = 2
Gn − 1

Gn
w

(n)
O

wO
. (6.12)

Equation (6.12) looks very similar to Friis’ formula for the noise figure of an electronic amplifier chain for
given individual excess noise figures Fz n and available gains Γv n, Eq. (5.62b), (5.65) on Page 127,

FN = 1 +

(
Fz 1 +

Fz 2

Γv 1
+

Fz 3

Γv 1Γv 2
+ . . .+

Fz N∏N−1
n=1 Γv n

)
(noise figure for thermal noise). (6.13)

The difference comes from the fact that Friis’ formula Eq. (6.13) describes thermal noise, while Eq. (6.12)
specifies shot (quantum) noise and ASE noise.
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If the sequence of “OA, filter, lossy fibre length” was reversed to “lossy fibre length, OA, filter” in
each link, the total link noise figure becomes

F
(gnGn)
N =

1

Gtot
+

1

g1

(
F (1)

sn +
F

(2)
sn

G1g2
+

F
(3)
sn

G1g2 G2g3
+ . . .+

F
(N)
sn∏N

n=1 Gn−1gn

)
, F (n)

sn = 2
Gn − 1

Gn
w

(n)
O

wO
. (6.14)

Frequently, the individual links have virtually identical characteristics, i. e., Gn = G, gn = g, w
(n)
O =

w′O, and serve to bridge a total link distance with a net gain of Gtot = 1, i. e., Gg = 1. The two arrangements
“OA, filter, lossy fibre length” (Gg) and “lossy fibre length, OA, filter” (gG) lead to total noise figures of

F
(Gg)
N and F

(gG)
N , respectively,

F
(Gg)
N = 1 +NFsn , F

(gG)
N = 1 +NGFsn , Gtot = 1 , Gg = 1 , F (n)

sn = Fsn . (6.15)

With an OA gain of G = 10 =̂ 10 dB and an OA noise figure of Fsn = 4 (F = 1
10 + 4 ≈ 4 =̂ 6 dB) for

N = 10 links, the arrangement (Gg) has a total noise figure F
(Gg)
10 = 41, while an element order with the

lossy fibre length in front of the amplifiers shows a much larger G-fold noise figure of F
(gG)
10 = 401.

6.2.3 Noise figure of a lossy fibre

Finally, we compute the noise figure of a fibre with a power gain factor 0 < g ≤ 1. As before, the quantum-
noise limited input SNR is given by Eq. (5.81) on Page 132. The fibre itself does not contribute noise (let
aside a negligible amount of thermal noise, because kT0 � hfe), but the output power is reduced to gPe,
and this carries over to the output SNR. The noise figure Fg becomes simply

SNR1 =
ηPe

2hfeB
, SNR2 =

ηgPe
2hfeB

, Fg =
1

g
, 0 < g ≤ 1 . (6.16)

It follows that the noise figure of a fibre, expressed as a logarithmic quantity Fg dB = 10 lgFg, simply
equals the power attenuation constant a = 10 lg (1/g).

However, if the input SNR1 is given by a signal embedded in classical noise, then the fibre’s attenuation
does not degrade the output SNR2, which then equals the input SNR1: Input signal and input noise are
attenuated alike.

6.3 Signal shaping

The following publication describes strategies, how signal shaping could be done in the digital, electrical
or optical domain. These techniqes are important to decrease the channel spacing in wavelength-division
multiplexing and thereby improving the spectral efficiency, while still avoiding linear crosstalk among
neigbouring channels. In addition, shaping of the transmitted pulses can also improve the nonlinear
transmission performance.
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Pulse-Shaping With Digital, Electrical, and Optical
Filters—A Comparison

Rene Schmogrow, Shalva Ben-Ezra, Philipp C. Schindler, Bernd Nebendahl, Christian Koos,
Wolfgang Freude, and Juerg Leuthold

Abstract—We investigate the performance of sinc-shaped
QPSK signal pulses generated in the digital, electrical, and
optical domains. To this end an advanced transmitter with a
digital pulse-shaper is compared to analog transmitters relying on
pulse-shaping with electrical and optical filters, respectively. The
signal quality is assessed within a single carrier setup as well as
within an ultra-densely spaced WDM arrangement comprising
three channels. An advanced receiver providing additional digital
filtering with an adaptive equalization algorithm to approximate
an ideal brick-wall Nyquist filter has been used for all schemes.
It is found that at lower symbol rates, where digital processing is
still feasible, digital filters with a large number of filter coefficients
provide the best performance. However, transmitters equipped
with only electrical or optical pulse-shapers already outperform
transmitters sending plain unshaped NRZ signals, so that for
higher symbol rates analog electrical and optical techniques not
only save costs, but are the only adequate solution.

Index Terms—Optical modulation, optical pulses, optical trans-
mitters, pulse-shaping methods.

I. INTRODUCTION

S HAPING the pulse envelope of -ary quadrature ampli-
tude modulated (QAM) signals has attracted quite some

attention recently. Pulse-shaping techniques allow for instance
a decrease of the channel spacing, and with this an improve-
ment of the spectral efficiency (SE) of wavelength division
multiplexed (WDM) transmission, while still avoiding linear
crosstalk among neighboring channels [1]–[4]. Pulse-shaping
may also improve the nonlinear transmission performance [2].
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Among the many possible pulse-shapes, sinc-shaped pulses
with a corresponding rectangular spectrum are of particular in-
terest as they allow transmission in the Nyquist WDM regime
[1]–[3]. For Nyquist WDM, channel spacing and symbol rate
are identical. Sinc-shaped Nyquist pulses are also special in
a way that their pulse form meets the Nyquist criterion, ac-
cording to which impulse maxima coincide with the zeros of
neighboring pulses, so that inter-symbol interference (ISI) is
avoided. In practice, shaping of a pulse can be achieved by per-
forming pulse-shaping in the digital [5], in the electrical, or op-
tical [6], [7] domain using appropriate filters. While at lower
symbol rates ( 35 GBd) all shaping techniques are available,
at higher symbol rates only analog electrical or optical [7] tech-
niques are at hand. Each of the methods has advantages and
disadvantages. Unfortunately, the various methods have never
been directly compared.
In this paper we compare digital, electrical and optical

pulse-shaping techniques. The comparison is performed for
lower symbol rates where all techniques can be implemented.
More precisely, we form a sinc-shaped pulse from a 20 GBd
quadrature phase shift keyed (QPSK) signal and investigate
the influence of the shaping technology on the signal quality
for a single optical carrier. Sinc-shaping in the digital domain
is performed by our software-defined transmitter (Tx). This
allows us to create an almost perfect sinc-shaped pulse form
with virtually zero roll-off. Electrical and optical filters are
alternatively used to approximate sinc-shaped pulses by analog
means. Last, we assess the performance of the signals in a setup
with three carriers where the channel spacing of 20 GBd QPSK
signals is varied from 17 GHz to 50 GHz. This way, we explore
pulse-shaping for the sub-Nyquist WDM, the Nyquist WDM,
and the ultra-dense WDM regimes. To make the comparison as
fair as possible, we have optimized not only the Tx but also the
receiver (Rx) with a sophisticated equalization technique based
on Nyquist brick-wall filtering to minimize the ISI for each of
the transmitters. It is found that digitally formed sinc-shaped
pulses provide superior performance at low symbol rates. How-
ever, sinc-shaped pulses generated by electrical filters are not
so far off, and pulses shaped by optical filters still outperform
plain unshaped signals.

II. DIGITAL, ELECTRICAL OR OPTICAL PULSE-SHAPERS FOR
SINGLE-CHANNEL QPSK

The performance of digitally, electrically, and optically pulse-
shaped signals is investigated first. As a signal source for all
of the pulse-shaping techniques we use a single-polarization
QPSK signal generated from a pseudo random binary sequence

0733-8724/$31.00 © 2013 IEEE
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Fig. 1. Setup for single carrier pulse-shaping and measurement of its performance. A pair of field programmable gate arrays (FPGA) drives two high-speed
digital-to-analog converters (DAC). The digital pulse-shaper (green) is realized within the FPGAs. Electrical image-rejection filters (red) remove either image
spectra for the digital pulse-shaper or solely perform pulse-shaping of the QPSK signals. The electrical signals then modulate an external cavity laser (ECL) by
means of an optical I/Q-modulator. In the case of optical pulse-shaping a Finisar WaveShaper (blue) is employed. We use a variable optical attenuator (VOA)
together with an erbium doped fiber amplifier (EDFA) to adjust the optical signal-to-noise ratio (OSNR). A 95/5 splitter directs the signals to an optical spectrum
analyzer (OSA) and to a coherent receiver (OMA, Agilent optical modulation analyzer).

(period: ) and encoded onto a single-carrier. The ini-
tial pulses have a non-return-to-zero (NRZ, rectangular) pulse
shape. NRZ-QPSK signals have been chosen because they are
widely employed [8] and show good performance especially
for long haul transmission [9]. The experimental setup is de-
picted in Fig. 1. To generate the NRZ-QPSK data pulses we use
a versatile software-defined optical Tx comprising two Xilinx
XC5VFX200T field programmable gate arrays (FPGA) and two
high-speed Micram digital-to-analog converters (DAC) [10].
The DACs are operated at sampling rates up to 30 GSa/s with a
physical resolution of 6 bit and an analog electrical bandwidth

. The respective pulse-shaping for the three
schemes is implemented as follows:
• The digital filters (marked green in Fig. 1) are realized in
the FPGA. The additional electrical filters (red) are then
used to remove the digitally generated image spectra when
sinc-pulses are generated in the digital domain.

• When the sinc-shape is approximated in the electrical do-
main the electrical filters alone shape the electrical drive-
signals that are fed to the IQ-modulator. The IQ-modu-
lator then encodes QPSK data onto an external cavity laser
(ECL, wavelength , linewidth 100 kHz).

• When performing pulse-shaping in the optical domain the
DAC output signals are directly fed to a nested
Mach-Zehnder IQ-modulator (MZM) with a modulation
bandwidth of . To generate the optically
filtered QPSK signals, a Finisar WaveShaper [11] serves as
pulse-shaper located behind the modulator (marked blue in
Fig. 1). The WaveShaper comprises general imaging op-
tics (lenses and mirrors), a diffraction grating, and liquid
crystal on silicon (LCoS) cells for shaping the phase of
the optical spectrum. Used as a freely programmable filter,
the spectral resolution is 12.5 GHz. As an alternative for a
fixed-frequency optical filter with a nearly rectangular fre-
quency response an optical interleaver could be used [12].

A variable optical attenuator (VOA) adjusts the optical power
launched into the first erbium doped fiber amplifier (EDFA), and
thus varies the optical signal-to-noise ratio (OSNR in a band-
width of 0.1 nm).
A schematic optical power spectrum centered at the ECL

wavelength is shown as an inset. The spectrum drops toward
the band edges. In the case of digital filtering, this is due to the
frequency response of the DAC and the image-rejection filters
(an influence which could have been compensated for by dig-
ital pre-conditioning). For the electrical and optical filters this

spectral drop cannot be avoided in practice, and the spectral
cut-off cannot be as sharp as for the digital filter. However, this
non-ideal spectral shape can be compensated in the Rx as will
be explained in the next subsection.
An optical spectrum analyzer (OSA) determines the OSNR.

The signal is filtered by a standard 1 nm optical filter which
removes spurious EDFA noise. Finally, the signal power is lev-
eled with the second EDFA and coherently received by the Ag-
ilent optical modulation analyzer (OMA). The OMA comprises
two 90 optical hybrids (one for each polarization) and bal-
anced photo-detectors. A free-running ECL serves as an internal
local oscillator (LO). The signals are sampled by real-time os-
cilloscopes with 80 GSa/s each having an analog bandwidth of
32 GHz.
The following subsections describe first the digital signal pro-

cessing (DSP) in the Rx irrespective of the Tx pulse-shaping
technique that is employed. Subsequently, we describe the dig-
ital, analog, and optical pulse-shaping in the Tx.

A. Digital Signal Processing in the Receiver

To overcome limitations introduced by components with
finite electrical bandwidth, we investigate advanced Rx pro-
cessing techniques such as equalizers with finite impulse
response (FIR) filters to minimize ISI, or “brick-wall” digital
filtering to suppress signals outside the Nyquist frequency
bandwidth that equals the symbol rate (named “Nyquist
filtering” in the following). In addition to Nyquist filtering we
employ an advanced clock recovery scheme [2].
First the coherently received signals are polarization de-mul-

tiplexed [13], [14] if polarization division multiplexing (PDM)
[15] was applied. In this section we investigate signals on
a single polarization only and thus omit the polarization
de-multiplexing block. The remaining DSP blocks are shown
in Fig. 2(a). The corresponding signal spectra are displayed
in Fig. 2(b). The black spectrum on top (Tx) corresponds to
electrically shaped QPSK signals as received and sampled by
the Rx. It shows a significant roll-off within the pass-band
because of the electrical image-rejection filters in the Tx, see
inset Fig. 2. Due to this roll-off, the Nyquist ISI criterion
is violated. The Nyquist filtering block removes the signal
spectrum outside the Nyquist frequency band (Fig. 2(b), red
spectrum NYQ), yet the Tx caused roll-off remains. This is
done in the frequency domain using two samples for each
transmitted symbol. If there is a significant frequency offset
between signal carrier and LO, it should be compensated prior
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Fig. 2. Digital signal processing (DSP) blocks in the receiver together with the influence of the various equalization elements on the achievable symbol rate. (a)
A Nyquist filtering block (NYQ) removes the signal spectrum outside the Nyquist frequency band and provides clock recovery. The static pre-equalizer (EQs)
coarsely flattens the combined Tx and Rx transfer functions. A blind post-equalizer is dynamically adjusted by evaluating the measured error vector magnitude
(EVM). Inside this control loop the carrier phase is recovered. (b) Ensemble averaged spectra for 20 GBd signals. The unfiltered spectrum (top, Tx) shows a
significant roll-off. After Nyquist filtering portions outside the Nyquist frequency band are removed (middle, NYQ). The static equalizer (EQs) additionally flattens
the Nyquist pass-band. (c) EVM versus symbol rate plotted for an analog Tx with cut-off frequency . (Black, Tx): Dynamic equalizer only.
(Red, NYQ): Dynamic equalizer and Nyquist filtering. (Blue, NYQ + EQs): All DSP blocks in Subfigure (a) are active. The better a flat brick-wall spectrum is
approximated, the closer the symbol rate approaches the Nyquist rate of 24.6 GBd.

to Nyquist filtering. In our case, this frequency offset (even
though free-running lasers were used) was kept well below
1% of the symbol rate without any additional, more refined
digital frequency offset compensation. This was achieved by
adjusting the tunable laser sources. Hence, signal degradation
due to carrier frequency offset is negligible. It should be noted,
however, that especially for any Rx employing a matched filter
(e.g. for square root raised cosine or orthogonal frequency di-
vision multiplexed signals), the carrier frequency offset should
be kept at minimum prior to filtering. The described Nyquist
filtering includes also the clock recovery [2] as standard clock
recovery mechanisms fail for sinc-shaped Nyquist signals [16].
As an alternative, timing recovery could be performed ac-
cording to [17]. Next, a static pre-equalizer with 25 coefficients
coarsely flattens the combined Tx and Rx transfer functions
hence mitigating ISI (Fig. 2(b), blue spectrum ).
Finally, a blind post-equalizer ( with 25 taps, using the
least-mean square algorithm [18]) is adapted by evaluating the
measured error vector magnitude (EVM) [19], [25]. It removes
any residual roll-off and thus residual ISI. Inside this control
loop the carrier phase is recovered. Both equalizers, static and
adaptive, operate with one sample per symbol and are applied
after the clock information has been recovered.
To judge the influence of the DSP blocks preceding the dy-

namic equalizer , wemeasured the signal quality (EVM) of
the electrically shaped NRZ-QPSK as a function of the symbol
rate. The LO of the coherent Rx has been tuned to approximately
match the wavelength of the Tx laser (intradyne reception). For
a single polarization QPSK signal we adjusted the symbol rate
in 1 GBd steps from 16 GBd to 24 GBd. The Tx low-pass filters,
applied to both the in-phase and quadrature of the signals, limit
the analog bandwidth to a cut-off frequency .
These Tx filters also mimic a possible Rx bandwidth limitation
assuming a linear transmission system. Amaximum symbol rate
of results [20]. The outcome is
displayed in Fig. 2(c). Due to convergence issues, using solely
the adaptive post-equalizer , a maximum symbol rate of

only 17.5 GBd can be achieved for a minimum bit error ratio of
(black, Tx). Activating the Nyquist filtering block

(red, NYQ) enhances the possible symbol rate to 22.5 GBd. If
in addition the static equalizer is turned on, a maximum symbol
rate of 24 GBd is found. This comes close to the theoretical limit
[20]. Said Nyquist filtering and clock recovery has already been
demonstrated for -ary QAM as high as 512QAM [21].

B. Digital Filtering in the Transmitter

Digital Nyquist pulse-shaping has proven excellent perfor-
mance in ultra-densely spaced WDM networks [5]. The dig-
itally sinc-shaped Nyquist pulses have been generated by our
software defined Tx which acts as an arbitrary waveform gen-
erator (AWG), i.e., signal generation and digital pulse-shaping
(Fig. 1, green) is performed offline. An FIR filter of order

was used for pulse-shaping. The implications of approxi-
mating a sinc-shaped impulse response with a finite number of
filter coefficients were thoroughly investigated in [2]. For prac-
tical systems, similar to the one investigated here, even a filter
order as low as 32 would provide very good performance [22].
The generated signals are then stored in the FPGAs. A 6 bit
DAC provides the transition from the digital to the analog do-
main. The electrical image-rejection low-pass filters of

(Fig. 1, red) remove spurious image spectra created
by the DACs [10], and we end up with sinc-shaped Nyquist
pulses with virtually zero spectral roll-off [2]. The DACs are
operated at 30 GSa/s and the symbol rate is 20 GBd leading to
an effective oversampling factor of [23].
Ensemble averaged spectra measured with the OMA are

shown in Fig. 3. Due to the high filter order , nearly all of the
signal power is confined to the Nyquist frequency band (Fig. 3,
top). Thus the optical signal bandwidth is virtually 20 GHz for
a 20 GBd QPSK signal. Static and dynamic equalization in the
Rx flattens the spectral roll-off. The resulting spectrum shows
a flat Nyquist pass-band and steep edges (Fig. 3, bottom).
We measure BER and EVM as a function of OSNR. We fur-

ther estimate an equivalent BER from the measured EVM and
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Fig. 3. Measured Tx spectra for digitally shaped single-carrier QPSK signals.
Top: Nyquist-shaped Tx signal spectrum, not compensated for DAC roll-off.
Bottom: Rx signal spectrum after Nyquist filtering and additional static and dy-
namic equalization which compensate for the roll-off introduced by Tx and Rx
electronics.

Fig. 4. Measured BER performance for digitally shaped single-carrier QPSK
signals. Measured BER (squares) and estimated BER as derived from EVM
measurements (solid line) as a function of OSNR for 20 GBd QPSK. The inset
shows the constellation diagram at highest possible OSNR of 30 dB.

display the results in Fig. 4. Measured BER (squares) and esti-
mated BER derived from EVM (line) coincide. An inset shows
a constellation diagram for the highest achievable OSNR of
30 dB.

C. Electrical Filtering

To generate sinc-shaped Nyquist pulses in the electrical do-
main we use (as approximation to rectangularly shaped filters)
the same low-pass image-rejection filters as before. Although
we keep the DACs in the setup, they only produce two-level
NRZ electrical signals. Therefore binary drivers suffice, which
potentially reduces overall cost of the Tx significantly. The
simulated -parameters provided by the manufacturer and
the group delay derived from the transfer function of
the electrical low-pass filters are depicted in Figs. 5 and 6. A
3 dB cut-off frequency of can be seen from
the curve (blue). The reflection represented by
the curve (red) is suppressed by at least 20 dB
throughout the pass-band, Fig. 5. The actually manufactured
filters show 3 dB cut-off frequencies of . The
group delay in the pass-band stays below 0.5 ns, see Fig. 6.
A typically received and ensemble averaged power spectrum

of a 20 GBd QPSK signal at an OSNR of 30 dB is shown in

Fig. 5. Simulated S-parameters of the employed electrical low-pass filters. The
measured cut-off frequency of the manufactured filters is .

Fig. 6. Simulated group delay of the employed electrical low-pass filters. The
group delay stays below 0.5 ns throughout the pass-band.

Fig. 7(a), upper row. In order to obtain the spectrum, we mea-
sure the time domain waveform with the OMA and perform
a Fourier transform. The optical signal bandwidth is

close to the pass-band of the
electrical filters. After filtering and performing the Rx DSP the
signal bandwidth is digitally reduced to the Nyquist frequency
band of 20 GHz, and the pass-band is flattened as to be seen in
Fig. 7(a), lower row. Constellation diagrams for 20 GBd and 24
GBd QPSK are shown in Fig. 7(b).
Fig. 8 shows the measured BER (squares) and the BER es-

timated from EVM (solid lines) [19], [25]. Measured and esti-
mated BER agree well. Measurements are done for single-po-
larization and single-carrier QPSK, for different symbol rates,
and for different OSNR.As expected, the BER degrades with in-
creasing symbol rate. For large OSNR, a BER error floor can be
seen. This error floor stems from the electronic noise originating
from the Tx and Rx. However, this noise is negligible compared
to the optical noise of multiple EDFAs that will be picked in
transmission links with multiple amplifiers. For the given op-
tical output power of our Tx with electrical pulse-shaping, and
for the given EDFA, the maximum achievable OSNR is 34 dB.
The overall BER as a function of OSNR is approximately

same comparing a single optical carrier modulated with either
digitally or electrically shaped sinc-pulses. However, the digital
pulse-shaper produces 20 GBd signals with virtually 20 GHz
bandwidth whereas electrically shaped 20 GBd signals require
a bandwidth of 25.2 GHz. As a disadvantage, the maximum
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Fig. 7. (a) Measured and ensemble averaged spectrum (top) of a 20 GBd elec-
trically generated QPSK signal. As expected, the overall signal bandwidth cor-
responds to two times the electrical filters’ cut-off frequency. Measured spec-
trum (bottom) for the same signal after applying the Nyquist filtering procedure
in the Rx as described in Fig. 2. The filter removes signal components outside
the Nyquist frequency band and flattens the spectrum in the pass-band. (b) Re-
ceived constellation diagrams for 20 GBd (top) and 24 GBd (bottom) QPSK.

Fig. 8. Measurement results for electrically shaped QPSK signals at varying
symbol rates as a function of OSNR. Measured BER (squares) and estimated
BER(EVM) (solid lines) for different symbol rates and different OSNR. The
error floor at high OSNR values stems from the electrical noise added by Tx
and Rx. This noise has negligible influence on the measurements in Section III.

achievable OSNR for the digital pulse-shaper is 4 dB less than
for the analog pulse-shaper. This is dominantly due to the in-
creased peak-to-average power ratio of the digitally shaped sig-
nals [2] with their more pronounced side lobes as compared to
the pulses shaped by analog filters (see Section II-F). For the
multi-carrier experiments in Section III we limit the symbol rate
to 20 GBd, since already a symbol rate of 21 GBd leads to a sig-
nificant penalty.

D. Optical Filtering

Finally, to approximate sinc-shaped pulses in the optical do-
main we use a Finisar WaveShaper as an optical band-pass filter
and apply it to conventional NRZ-QPSK signals. We adjust the
WaveShaper to have a fixed optical pass-band of 12.5 GHz.
Since the filter pass-band at this resolution is difficult to change
we instead vary the symbol rate from 20 GBd to 28 GBd in steps
of 2 GBd. We only measure signals where the signal quality
remains above the quality required for state-of-the-art forward
error correction (FEC).
The spectrum for a 20 GBd optically filtered QPSK signal

can be seen in Fig. 9(a), upper row. As expected and due to the

Fig. 9. (a) Measured and ensemble averaged spectrum (top) of a 20 GBd opti-
cally shaped QPSK signal. The spectral roll-off is not as steep as for electrically
shaped signals. After DSP equalization at the Rx, the pass-band of the signal is
flat (bottom). (b) Received constellation diagrams for 20 GBd (top) and 28 GBd
(bottom) QPSK.

Fig. 10. Measurement results for optically shaped QPSK signals at various
symbol rates as a function of OSNR. Measured BER (squares) and estimated
BER(EVM) (solid lines) for different symbol rates and different OSNR. In our
optical filter setup Nyquist filtering at the Rx only provides an advantage for
symbol rates 28 GBd.

Lorentzian shape of the optical filter we do not see steep band
edges as for the electrically shaped signal spectrum in Fig. 7(a).
After DSP at the Rx we again obtain a flat pass-band of the
signal spectrum (Fig. 9(a), lower row) leading to a minimum
ISI. Constellation diagrams for 20 GBd and 24 GBd QPSK are
shown in Fig. 9(b). Measured BER and estimated BER(EVM)
for different OSNR and different symbol rates are depicted in
Fig. 10. The BER increases with increasing symbol rate as the
fixed filter width of 12.5 GHz significantly affects signals faster
than 22 GBd. Applying the Nyquist filtering at the Rx as de-
scribed in Section II-A decreases BER and EVM for signals
with 28 GBd. For smaller symbol rates we find that there is
no difference for a receiver with and without said electronic
Nyquist filtering technique. Since 20 GBd signals showed best
performance we use these signals for theWDM experiments de-
scribed in Section III. The highest achievable OSNR decreases
from 30 dB to 25 dB which reflects the additional insertion loss
of the WaveShaper in our setup.

E. Comparing BER Performance With Theory

Since optical networks are usually operated such that re-
ceived signals exhibit a BER close to the limit determined by
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Fig. 11. BER (squares) and equivalent BER(EVM) (solid lines) as a function
of SNR per bit for digitally (green), electrically (red), and optically (blue) fil-
tered 20 GBd QPSK signals. The performance is close to what is expected from
theoretical considerations (dashed curve) [22].

state-of-the-art FEC, we now more closely investigate the per-
formance of signals shaped with the different filters in this very
region. In addition, we compare the results to theory [24]. The
outcome is depicted in Fig. 11. As before, the squares indicate
the measured BER, the solid lines represent the BER(EVM)
obtained from the measured EVM, and the dashed line marks
the theoretically achievable performance. It can be seen that
BER(EVM) deviates from direct BER measurements by a
shift of only up to 0.2 on a logarithmic scale, corresponding
to a factor of 1.5 on a linear scale. In order to guarantee a fair
comparison, we rather plot BER as a function of SNR per bit
[24] than using the measure. This is because the
OSA used to determine does not account for the
slightly different signal bandwidths of the differently shaped
signals. Looking at Fig. 11 we can conclude that the BER
performance obtained experimentally is close to what has been
predicted theoretically [24]. It can be further seen that digitally
shaped signals (green) are within 1.5 dB of the theoretical limit,
and that the results for electrically (red) and optically (blue)
shaped signals are closely neighbored.

F. Comparing Pulse Shapes

In order to give a better idea of how accurately a sinc-shaped
impulse form is met when employing digital, electrical, and
optical pulse-shapers, we use the received signal spectra from
Figs. 3–9 (upper rows) without any equalization and derive the
individual pulse forms. The outcome is depicted in Fig. 12. The
digitally shaped pulse in Fig. 12 (top row) most accurately ap-
proximates a sinc-shaped impulse. The electrical pulse-shaper
still produces sinc-typical side lobes but they decay rapidly,
see Fig. 12 (middle row). The optical pulse-shaper yields the
worst sinc-approximation, see Fig. 12 (bottom row). This was
expected as the transfer of the optical filter is Lorentzian and
not rectangular. For high symbol rates ( 50 GBd), where sev-
eral segments of the WaveShaper are transparent, the overall
filter approximates a rectangle much better than for a 12.5 GHz
single segment pass-band.

Fig. 12. Different pulse forms measured from digital (top, green), electrical
(middle, red), and optical (bottom, blue) pulse-shapers. As expected, the dig-
ital pulse-shaper approximates a sinc-shaped pulse form most accurately. The
electrical pulse-shaper still produces sinc-typical side lobes, whereas the optical
pulse-shaper matches a sinc-function worst.

III. PERFORMANCE EVALUATION OF THE DIFFERENT
PULSE-SHAPERS IN A WDM NETWORK

The differently shaped QPSK signals are now employed in
an ultra-dense WDM network scenario emulated by three chan-
nels with different, free-running carrier frequencies. A common
QPSK symbol rate of 20 GBd is chosen for each channel. The
channel spacing was varied between 17 GHz and 50 GHz and
thus covers the WDM as well as the Nyquist WDM case. We
measure single-polarization and PDM [15] signals. The quality
of filtered, band-limited Tx signals is compared to the standard
rectangular NRZ pulses, which are either received as is, or rect-
angularly filtered at the Rx.
For evaluating the performance of the different pulse-shaping

techniques we investigate the transmitters discussed in
Section II within a three-carrier ultra-dense WDM setup,
Fig. 13. Three external cavity lasers (ECL) provide the three
optical carriers with a linewidth below 100 kHz each. A fourth
ECL of the same kind is used as LO within the OMA. All
lasers are free-running, i.e., there is neither frequency nor phase
locking. The observed frequency offsets between Tx lasers and
LO laser are in the range of 100 MHz, which is only 0.5%
of the symbol rate 20 GBd. Two different transmitters guarantee
de-correlated data streams for the middle channel (Tx I) and the
two outer channels (Tx II). The three signals are combined with
equal powers. Polarization division multiplexing is emulated
by splitting the signals in two arms, applying a delay of 5.3
ns in one arm, and finally combining both arms two form two
orthogonal polarizations. For a worst-case linear cross-talk
(where adjacent channels have the same state of polarization)
we use polarization maintaining components and fibers (Fig. 13,
blue). The ultra-dense WDM signal is amplified and coherently
received by the OMA. By varying the carrier spacing we
determine the potential of the three pulse-shaping techniques
for the minimum guard band and thus best spectral efficiency
(SE) in a WDM network. The evaluation is based on both BER
and EVM.
Measured spectra for pulses shaped with different techniques

at a channel spacing of and for a symbol rate
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Fig. 13. Setup to test the minimum required carrier spacing in an ultra-dense WDM network. Three free-running ECLs are encoded with QPSK signals and
shaped in the digital, the electrical and optical domain. For testing purposes an unshaped NRZ-QPSK is tested as well. Two independent Tx guarantee uncorrelated
data in adjacent channels. A worst-case scenario with polarization maintaining components (blue optical paths) maximizes inter-channel crosstalk. For PDM
experiments the combined three channels are split, delayed by 5.3 ns, and combined in orthogonal polarizations. The remaining setup is identical to the ones used
in Section II.

Fig. 14. Ultra-dense WDM spectrum of signals generated with different
pulse-shaping techniques. The carrier spacing is and the
carriers are QPSK encoded with single-polarization 20 GBd. (a) Unfiltered
NRZ pulse-shape, only shaped by the limited electrical bandwidth of the DACs
( 18 GHz) and the optical modulator (25 GHz). (b) Spectrum of digitally
generated sinc-shaped QPSK signal. The digitally generated signal shows
distinct spectral notches which are due to the steep-edged digital filters in the
Tx. (c) Electrically pulse-shaped QPSK spectrum. (d) Optically pulse-shaped
QPSK spectrum.

of 20 GBd are shown in Fig. 14. As a reference we first de-
pict the unfiltered NRZ signal, Fig. 14(a). The NRZ signal is
only shaped by the limited electrical bandwidths of DACs ( 18
GHz) and the bandwidth of the optical modulator (25 GHz). For
digitally pulse-shaped QPSK signals, see Fig. 14(b), the filter
slopes are so steep that even notches appear in the region be-
tween the channels. For the case of the QPSK signals shaped
electrically, see Fig. 14(c), and optically, see Fig. 14(d), one can
see that the three channels slightly overlap.
We determine BER and BER derived from EVM measure-

ments for all pulse-shaping schemes and for varying channel
spacing . All signals have a symbol rate of 20 GBd and
are transmitted with highest possible OSNR. The results for the
single polarization and the dual polarization experiments are de-
picted in Fig. 15(a) and (b), respectively. We begin with the un-
filtered, plain NRZ signal (black solid lines for EVM derived
BER and squares for BER measurements). As expected, the
impact of inter-channel interference (ICI) for unfiltered, plain
NRZ is largest. We also applied the Nyquist filtering technique

Fig. 15. Measured BER (squares) and estimated BER(EVM) (lines) for dif-
ferent pulse-shaping techniques as a function of varying channel spacing .
All channels transmit 20 GBd QPSK signals. The local maximum for Nyquist
Rx-filtering near marks the point where the unfiltered sinc-
shaped Tx spectra start overlapping. (a) Single polarization setup. (b) Polariza-
tion division multiplexing (PDM).

to the unfiltered NRZ signal at the Rx (brown). Both signals
require larger channel spacing than any of the pulse-shaped sig-
nals. At we see a break-even point for the un-
shaped NRZ signals. There is a local maximum of the Rx-fil-
tering curve (brown) near where the unfiltered
sinc-shaped Tx spectra start overlapping. It seems that there is
a difference between detection with or without Rx Nyquist-fil-
tering. This local maximum is much more distinct for the Rx
Nyquist-filtered signals (brown) but also visible for the conven-
tionally received NRZ (black). Optically pulse-shaped (blue)
and electrically pulse-shaped (red) signals show negligible ICI
for . We attribute the increased error floor for
optically filtered PDM-QPSK (Fig. 15(b), blue) to the polar-
ization de-multiplexing algorithm [13], which is sensitive to
signal components of the two outer channels within the received
middle channel. This is especially critical for optically pulse-
shaped signals where the filter slopes are not very steep. The
digitally filtered signals show negligible penalty due to ICI up
to the Nyquist channel spacing of . This tech-
nique is clearly best suited for Nyquist WDM setups where the
channel spacing is equal to the symbol rate and the symbol rate
is sufficiently low. However, this digital operation comes at a
price of intense signal processing so that electrical and optical
pulse-shapingmost likely have a CAPEX andOPEX advantage.

IV. CONCLUSION

We investigated the performance of digitally, electrically, and
optically pulse-shaped QPSK signals for single-carrier trans-
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mission and in a three-carrier ultra-dense WDM setup. For this
purpose, both BER and EVM were measured. Digitally shaped
sinc-pulses outperform other pulse-shaping techniques that rely
on current state-of-the art electrical or optical filters. For digi-
tally shaped signals the crosstalk is negligible even for a channel
spacing of corresponding to the Nyquist limit
for 20 GBd signals. Yet, it is important to note that both electri-
cally and optically pulse-shaped signals always outperform un-
filtered NRZ in terms of spectral efficiency. As an advantage of
the analog techniques compared to digital pulse-shaping, costly
DACs are not required and power consumption can be signifi-
cantly reduced.
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Appendix A

Linear and nonlinear fibre properties

A.1 Maxwell’s equations

For describing nonlinearities in the fibre channel, we need to go back to the basic Maxwell equations
for wave propagation. Electromagnetic waves, i. e., the magnetic and electric field vectors ~H, ~E, the
electric displacement ~D, the induced electric polarization ~P , the magnetic induction ~B and the magnetic
polarization ~M are solutions of Maxwell’s equations. We assume vanishing current densities ~J = 0,
and no electric space charge densities % = 0. The medium at the frequencies of interest be isotropic,
for the time being linear and non-magnetic ~M = 0, i. e., the medium properties are given by scalar,
amplitude-independent quantities with a relative magnetic permeability µr = 1. The dielectric constant
(permittivity) and the magnetic permeability as well as the velocity of light and the wavelength λ in
vacuum for a frequency f with an angular frequency ω = 2πf are ε0, µ0, c = 1/

√
ε0µ0, λ = c/ f . The

wave impedance of vacuum is Z0 =
√
µ0/ε0 ≈ 377 Ω. With this notation, and in the International System

of Units (système international d’unités, or SI), Maxwell’s equations and the so-called constitutive or
material equations are:

curl ~H = ~J +
∂ ~D

∂t
, curl ~E = −∂

~B

∂t
,

div ~D = % , div ~B = 0,

 Maxwell’s equations

~D = ε0 ~E + ~P , ~B = µ0
~H + ~M.

}
constitutive equations

(A.1)

All vector quantities ~X are functions ~X(t, ~r ) of time t and position vector ~r = x~ex + y~ey + z~ez in
Cartesian coordinates x, y, z (unit vectors ~ex,y,z). Assuming a positive time dependence exp ( jωt), the
time-frequency Fourier transform relation (FT) and the inverse FT (IFT) are listed in Table 1.3 on
Page 9).These functions are often discriminated only by their argument: Ψ(t) 6= Ψ(f = t), Ψ(f) := Ψ̆(f).

A.2 Scalar optics

If the relative variations of refractive index n and spatial derivative | gradn| along a distance of a medium
wavelength λ/n are small, |∆n|λ/n� 1 and |∆(gradn)|λ/| gradn| � 1, and if Cartesian coordinates for
the vector components are used, the differential equations for the 6 scalar field components Ψ(t, ~r ) :=
Ex,y,z(t, ~r ), Hx,y,z(t, ~r ) are approximately decoupled as in a truly homogeneous medium,

∇2Ψ(t, ~r ) =
n2(t, ~r )

c2
∂2Ψ(t, ~r )

∂t2
for Ψ := Ex,y,z, Hx,y,z and

|∆n|λ
n

,
|∆(gradn)|λ
| gradn|

� 1 . (A.2)

Solving Eq. (A.2) for any of the scalar field components, say Ex, determines the total solution. This
description is therefore known as the approximation of scalar optics. Naturally, the field components are
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interrelated by initial and boundary conditions. Each spectral component of the vector fields can be then
represented by a complex wave function Ψ (t, ~r ) = Ψ (~r ) exp ( jωt) with complex amplitude Ψ (~r ), which
is a solution of the so-called scalar Helmholtz equation,

Ψ(t, ~r ) = Ψ(~r ) e jωt, I(~r ) = 1
2n(~r ) |Ψ(~r )|2 ,(

∇2 + ω2

c2 εr(~r )
)
Ψ(~r ) = 0 ,

|∆εr|λ
εr

,
|∆(grad εr)|λ
| grad εr| � 1.

(A.3)

The wave amplitude Ψ(~r ) is normalized by the optical intensity I(~r ) (unit W /m2).

A.3 General nonlinear medium

For a more general homogenous medium, we drop the assumptions that the medium at the frequencies of
interest should be linear and isotropic, and write the (possibly nonlinear) wave equation for the electric
field,

curl ~H = ε0
∂

∂t
~E +

∂

∂t
~P , curl ~E = −µ0

∂

∂t
~H , div ~E = 0 ,

curl curl ~E =

(
− 1

c2
∂2

∂t2

)
~E +

(
−µ0

∂2

∂t2

)
~P . (A.4)

For an isotropic medium, scalar optics as defined in Eq. (A.2) can again used for simplification.

A.3.1 Linear Polarization

A dielectric is made out of positive and negative charges, e. g., ions and electrons. When an electric field
is present, it separates the charges of opposite polarity (periodically in the case of a time periodic field).
This charge separation results in an additional electric field, called (induced) polarization. In real media,

the polarization vector ~P (t, ~r ) in Eq. (A.1) follows ~E(t, ~r ) with some time-delay; it is understood that the
fields are spatially local, but non-local in time. This “memory” behaviour at each position ~r (argument ~r
is omitted if no ambiguity arises) may be described by a real causal impulse response χh(t), χh(t < 0) = 0,

~P (t, ~r ) = ε0

∫ ∞
0

χh(t1, ~r ) ~E(t− t1, ~r ) dt1,

~P (f) = ε0χ(f) ~E(f), χ(f) =

∫ ∞
0

χh(t) e− j 2πft dt,

χ(f) = χ(f) + jχi(f) = εr(f)− 1− j εri(f), χ(f) = χ∗(−f).

(A.5)

The proportionality constant between the spectra ε0 ~E(f) and ~P (f) is called linear electric susceptibility
χ (real part χ(f), imaginary part χi(f)); it defines a linear complex relative dielectric constant ε̄r (real
part εr(f), imaginary part −εri(f)). A linear complex refractive index n̄ (real part n(f), imaginary part
−ni(f)) is defined from the relation ε̄r = n̄2.

It is possible that in certain frequency range(s) of interest χ(f) = χ is constant (or weakly frequency
dependent) having a (virtually) vanishing imaginary part, χi = 0 (low-loss medium). For this range, the
medium may be described by a real, constant (or weakly frequency dependent) relative dielectric constant
εr or refractive index n. The polarization reacts instantaneously to the electric field. This is assumed in
the usual ansatz for ~D(t),

~P = ε0χ~E , ~D = ε0(1 + χ) ~E = ε0εr ~E, n =
√
εr in frequency range of interest. (A.6)
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A.3.2 Nonlinear polarization

For large electric fields the linear relation Eq. (A.6) does not hold any more. For simplicity, we disregard

here the vector nature of ~E and ~P , and write for the nonlinear polarization P (t) into the direction of
~r = x~ex an expansion with respect to the electric field E(t),

P (t) = ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

)
for the frequency range of interest. (A.7)

The quantity χ(n) is the real part of the complex susceptibility χ(n), so we assume a medium without
loss or gain. Actually, in anisotropic media, the susceptibility is a tensor, which we write using Einstein’s
notation1. The susceptibility tensor2 is also denoted by χχχ(n).

A.3.3 Order of nonlinearity

The coefficients χ(n) in Eq. (A.7) are known as susceptibilities of order n, where χ(1) := χ in Eq. (A.5).
Assuming isotropic media and a time-harmonic electric field E(t) = Ê(f1) cos(ω1t), we find a polarization

P (t) = ε0
1
2χ

(2)Ê2︸ ︷︷ ︸
opt. rectification

+ ε0χ
(1)Ê cos(ω1t)︸ ︷︷ ︸
linear optics

+ ε0
3
4 (χ(3)Ê2)Ê cos(ω1t)︸ ︷︷ ︸
self-phase modulation

+ ε0
1
2χ

(2)Ê2 cos(2ω1t)︸ ︷︷ ︸
SHG

+ ε0
1
4χ

(3)Ê3 cos(3ω1t)︸ ︷︷ ︸
THG

+ . . . . (A.10)

A wave of frequency f1 generates a second wave with angular frequencies f2 = 0, f1, 2f1, 3f1, . . ..
Depending on the type χ(n) of the nonlinearity, we identify the terms of

χ(1) linear optics,

χ(2) optical rectification (a DC voltage develops across the medium) and second-harmonic generation
(SHG),

χ(3) self-phase modulation (SPM, the effective susceptibility χ(3)Ê2 and therefore the refractive index
are modified by the intensity Ê2 of the field), and finally the term of third-harmonic generation
(THG).

1Whenever appropriate, we replace subscripts x, y, z by subscripts 1, 2, 3. If such an index occurs two or more times in
a term, it is implied, whithout any further symbols, that the terms are to be summed over all possible values of the index.
Example: Let ~X = Xx~ex + Xy~ey + Xz~ez . Replacing the subscripts yields ~X = X1~e1 + X2~e2 + X3~e3 =̂ Xi. The scalar

product ~X2 = ~X · ~X = X2
1 +X2

2 +X2
3 =

∑3
i=1 XiXi may be simply written as XiXi.

2A tensor χχχ(n) of rank (n+ 1) having 3n+1 elements transforms a vector ~E into a tensor of rank n, χχχ(n) · ~E = χχχ(n−1).

Common notations are (vectors ~Q, ~R, ~S ):

χχχ(1) · ~E = ~Q

χχχ(2) : ~E ~E := (χχχ(2) · ~E) · ~E = ~R (A.8)

χχχ(3) .: ~E ~E ~E := ((χχχ(3) · ~E) · ~E) · ~E = ~S

The tensors of rank 0, 1, and 2 are more simply denoted as scalars, vectors, and tensors. Replacing the Cartesian coordinates
(subscripts x, y, z) by the subscripts 1, 2, 3, we formulate the product of a rank-2 tensor χχχ(1) (9 components χij) with a vector
~E (3 components Ej), which results in a vector ~Q (3 components Qj) by employing the Einstein summation convention
(see Footnote 1 on Page 177). The same notation is used for expressions with rank-3 and rank-4 tensors:

~Q = χχχ(1) · ~E ⇐⇒ χ
(1)
ij Ej = Qi , χ

(1)
ij Ej :=

3∑
j=1

χ
(1)
ij Ej

~R = χχχ(2) : ~E ~E ⇐⇒ χ
(2)
ijkEjEk = Ri , χ

(2)
ijkEjEk :=

3∑
j,k=1

χ
(2)
ijkEjEk

~S = χχχ(3) .: ~E ~E ~E ⇐⇒ χ
(3)
ijklEjEkEl = Si , χ

(3)
ijklEjEkEl :=

3∑
j,k,l=1

χ
(3)
ijklEjEkEl

(A.9)
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When two waves E(t) = Ê(f1) cos(ω1t) + Ê(f2) cos(ω2t) are interacting through χ(2) to generate a third
wave of frequency f3, the process is spoken of as three-wave mixing (TWM). Finally, when three waves
E(t) = Ê(f1) cos(ω1t) + Ê(f2) cos(ω2t) + Ê(f3) cos(ω3t) interact in a nonlinear χ(3)-medium to generate
a fourth frequency f4, this is know as four-wave mixing (FWM). All possible nth-order effects show if n
incident waves with (possibly degenerate) frequencies f1, f2, . . ., fn interact to generate a polarization at
frequency fn+1. For optical quartz glass fibres, the influence of second-order nonlinear processes is small3

compared to the importance of the χ(3)-nonlinearity. The general polarization Eq. (A.1) can be split into
a first-order linear and a third-order nonlinear part,

~P (t, ~r ) = ~P (1)(t, ~r ) + ~P (3)(t, ~r ). (A.13)

Using again Einstein’s notation4, we assume that the optical field maintains its initial polarization Ei, Pi
along the fibre (coupling of field components is negligible), so that the scalar approach may be adopted.
Then, the nonlinear wave equation (A.4) reduces to

∇2Ei(t, ~r )− 1

c2
∂2

∂t2
Ei(t, ~r ) = µ0

∂2

∂t2

(
P

(1)
i (t, ~r ) + P

(3)
i (t, ~r )

)
. (A.14)

Because of the complexity of Eq. (A.14), several further approximations5 become necessary.

A.4 Nonlinear Schrödinger equation

A.4.1 Separation ansatz

Assuming in Eq. (A.14) that ~E = Ex~ex, ~P = Px~ex, the Helmholtz equation is solved6,7 by an ansatz
for Ĕx(f − f0, ~r ), where the the transverse modal field function F̃ (x, y), the slowly varying envelope
ă(f, z), the phase term e− jβrefz, and a normalization constant cp are combined in product form. The fixed
reference propagation constant βref is basically arbitrary and will be determined later,

Ĕx(f − f0, ~r ) = cp F̃ (x, y) ă(f − f0, z) e− j βrefz, Êx(t, ~r ) =

∫ +∞

−∞
Ĕx(f − f0, ~r ) e j 2πft df . (A.15)

Because waveguide losses and nonlinearities are small, ε̃r ≈ εr, the reference propagation constant βref is
chosen to be real. Substituting the inverse Fourier transform Êx(t, ~r ) of Eq. (A.15) and replacing i = x,

3Frequency-doubling or SHG results from the second-order nonlinearity χ(2). The electric field be oriented along the
x-axis, ~r = x~ex, ~E = E~ex, E(t) = Ê(f1) cos(ω1t), and the polarisation ~P (2) = P (2)~ex with P (2)(t) = P̂ (2f1) cos(2ω1t) at
frequency f2 = 2f1 points into the same direction,

P̂ (2)~ex = ε0
1
2
χ(2)Ê2~ex, P̂ (2) = ε0

1
2
χ(2)Ê2. (A.11)

We maintain that the second-order susceptibility χ(2) vanishes for isotropic materials and crystals with inversion symmetry
(centrosymmetry; the atomic arrangement remains unchanged when mirrored at the inversion centre according to ~r = −~r ).

This may be easily proved by the following argument: If the direction of the electric field is reversed, ~E → − ~E, the
modulus of the polarisation cannot change because the physical arrangement is undistinguishable from the former one, but
the direction of the polarisation should reverse, ~P → −~P . Looking at Eq. (A.11) we require

−P̂ (2) = ε0
1
2
χ(2)

(
−Ê
)2

= ε0
1
2
χ(2)Ê2

(
P̂ (2) = ε0

1
2
χ(2)Ê2 from Eq. (A.11)

)
, (A.12)

which is in contradiction to Eq. (A.11). Therefore, χ(2) = 0 must be true for isotropic materials (glass, gases, liquids) and
for crystals with inversion symmetry. Based on similar arguments, χ(2n) = 0 can be proved for all susceptibilities of even
order. Fused silica (quartz glass) has a symmetric SiO2 molecule, is amorphous and isotropic (χ

(2n)
SiO2 glass = 0), while a

quartz crystal lacks this inversion symmetry (χ
(2n)
SiO2 crystal 6= 0).

In general, the susceptibility has tensor character, i. e., χ(n) varies according to the vibration directions of the electric
field. Depending on the symmetry class of the material, the number of different tensor coefficients reduces strongly.

4See Footnote 1 on Page 177
5See Sect. 2.3.1 Page 40 in reference Footnote 17 on Page 6
6See Sect. 2.3.1 Page 42 ff. in reference Footnote 17 on Page 6
7T. Kremp: Split-step wavelet collocation methods for linear and nonlinear optical wave propagation. PhD Thesis,

Karlsruhe, February 2002. Chapter 3
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we find

Ex(t, ~r ) =
1

2

(
Êx(t, ~r ) e j(ω0t−βrefz) + cc

)
, Êx(t, ~r ) = cp F̃ (x, y) a(t, z). (A.16)

With Eq. (A.15), the wave equation for the Ex-component is(
∇2 + ε̃r(f)k2

0

)(
cp F̃ (x, y) ă(f − f0, z) e− j βrefz

)
= 0 . (A.17)

Introducing the transverse Laplace operator ∇2
t = ∂2/∂x2 + ∂2/∂y2 in Cartesian coordinates, Eq. (A.17)

leads to

∇2
t F̃ (x, y) ă(f − f0, z) + F̃ (x, y)

(
∂2

∂z2
− j 2βref

∂

∂z
− β2

ref

)
ă(f − f0, z)

+ ε̃r(f) k2
0F̃ (x, y) ă(f − f0, z) = 0 (A.18)

For non-zero F̃ (x, y) and ă(f − f0, z) we divide Eq. (A.18) by F̃ (x, y) ă(f − f0, z),

∇2
t F̃ (x, y)

F̃ (x, y)
+ ε̃r(f) k2

0︸ ︷︷ ︸
g1(f,x,y,)=β̃2=constx,y

+

(
∂2

∂z2 − j 2βref
∂
∂z

)
ă(f − f0, z)

ă(f − f0, z)
− β2

ref︸ ︷︷ ︸
g2(f,z)=−β̃2=constz

= 0 . (A.19)

Both underbraced terms are represented by functions g1(f, x, y, ) = g2(f, z), which are equal, but do
not depend on the same spatial variables. Therefore they must be constant with respect to their spatial
spatial variables. Consequently, we define a frequency-dependent separation constant β̃2 = constx,y,z,

β̃2 =
∇2

t F̃ (x, y)

F̃ (x, y)
+ ε̃r(f)k2

0 = −
(
∂2

∂z2 − j 2βref
∂
∂z

)
ă(f − f0, z)

ă(f − f0, z)
+ β2

ref . (A.20)

This separates Eq. (A.18) in two differential equations,(
∇2

t + ε̃rk
2
0 − β̃2

)
F̃ (x, y) = 0 , (A.21)(

∂2

∂z2
− j 2βref

∂

∂z
+ β̃2 − β2

ref

)
ă(f − f0, z) = 0 . (A.22)

Without affecting the results, we could have chosen β̃2 − constx,y,z as the separation constant, e. g.,

β̃2 − β2
ref. Independently of that choice, β̃2 results by solving the eigenvalue problem Eq. (A.21) for the

transverse field alone, and no solution of the differential equation (A.22) for the amplitude ă(f − f0, z) is
required.

A.4.2 Slowly varying envelope approximation

We require an envelope, which varies slowly on the time scale of a period T0 = 1/f0 of an optical carrier
having a frequency f0 = ω0/(2π), therefore we neglect the second z-derivative,∣∣∣∂2ă

∂z2

∣∣∣� ∣∣∣2βref
∂ă

∂z

∣∣∣ for ∆t ≥ 10

f0
. (A.23)

This slowly varying envelope approximation (SVEA) neglects the backwards-propagating components of

the field generated by the nonlinear polarization8 P
(3)
i (t, ~r ) and is justified under the following conditions:

Consider an optical carrier, the envelope of which has a temporal width ∆t and a spatial width ∆z =

8Shen, Y. R.: The principles of nonlinear optics. New York: Wiley-Intersicence 1984. Chapter xii Page 216
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∆t c/n. Inside ∆z, the maximum amplitude change for a triangular impulse is assumed to be ∆ă = 1,
therefore an estimate of the first and second derivatives will be |∂ă/∂z| ' 2/∆z and |∂2ă/∂z2| ' 4/(∆z)2.
The condition Eq. (A.23), 4/(∆z)2 � (8πn/λ0)/∆z, simplifies to ∆t� 1/ω0. Replacing � by 20π×, we
arrive at Eq. (A.23). For λ0 = 1.5µm (f0 = 200 THz), we find ∆t ≥ 10× T0 = 50 fs.

This assumption leads with the inverse Fourier transform a(t, z) =
∫ +∞
−∞ ă(f − f0, z) e j 2π(f−f0)t df

and after replacing the term (ω − ω0) wih the differential operator j ∂/∂t to

∂a(t, z)

∂z
=

(
−β(1)

0

∂

∂t
+ j

β
(2)
0

2!

∂2

∂t2
+
β

(3)
0

3!

∂3

∂t3
− j
(
∆β̃(ω0) + β0 − βref

))
a(t, z). (A.24)

With |ă(f0 − f0, z)|2 ≈ |a(t, z)|2, and under the assumption of weak two-photon absorption α2, rela-
tion (A.24) is known as the nonlinear Schrödinger equation (NLSE),

∂a(t, z)

∂z
=

(
−β(1)

0

∂

∂t
+ j

β
(2)
0

2

∂2

∂t2
+
β

(3)
0

6

∂3

∂t3
− j
(
γ |a(t, z)|2 − j

α

2
+ β0 − βref

))
a(t, z),

γ̄ ≈ γ = <{γ̄} =
nI2k0

Aeff
,

|αI2|
Aeff

|a|2 � |α|
2
, Aeff =

(∫∫ +∞
−∞ |F (x, y)|2 dxdy

)2

∫∫ +∞
−∞ |F (x, y)|4 dxdy

. (A.25)

If for any z = z0 the initial value a(t, z0) is given, the envelope a(t, z) for all z can be determined using
Eq. (A.25).

A.4.3 Transformation of variables

To simplify Eq. (A.25), we introduce new variables. The time in a reference frame moving with the group

velocity vg = 1/β
(1)
0 is denoted by T , and the distance is temporarily called Z,

T = T (t, z) := t− β(1)
0 z = t− z/vg , Z = Z(t, z) := z . (A.26)

In the coordinate system (T, z), we define an envelope A(T,Z),

A
(
T (t, z), Z(t, z)

)
:= a(t, z). (A.27)

Differentiating Eq. (A.27) yields

∂a(t, z)

∂z
=
∂A(T,Z)

∂T

∂T

∂z
+
∂A(T,Z)

∂Z

∂Z

∂z
= −β(1)

0

∂A(T,Z)

∂T
+
∂A(T,Z)

∂Z
, (A.28)

∂a(t, z)

∂t
=
∂A(T,Z)

∂T

∂T

∂t
+
∂A(T,Z)

∂Z

∂Z

∂t
=
∂A(T,Z)

∂T
. (A.29)

For the higher derivatives n ≥ 2 with respect to t, we see with Eq. (A.29)

∂na(t, z)

∂tn
=
∂a(n−1)(t, z)

∂t
=
∂A(n−1)(T,Z)

∂T

∂T

∂t
+
∂A(n−1)(T,Z)

∂Z

∂Z

∂t

=
∂A(n−1)(T,Z)

∂T
=
∂nA(T,Z)

∂Tn
. (A.30)

Substituting Eq. (A.27)–(A.30) in Eq. (A.25), we find

∂A(T,Z)

∂Z
=

(
j
β

(2)
0

2

∂2

∂T 2
+
β

(3)
0

6

∂3

∂T 3
− j
(
γ |A(T,Z)|2 − j

α

2
+ β0 − βref

))
A(T,Z) . (A.31)

Because of Eq. (A.26), we re-substitute Z by z in the argument of the envelope A. If we further choose

βref = β0 , (A.32)
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equation (A.31) simply becomes

∂A(T, z)

∂z
=

(
j
β

(2)
0

2

∂2

∂T 2
+
β

(3)
0

6

∂3

∂T 3
− j γ |A(T, z)|2 − α

2

)
A(T, z). (A.33)

Due to the quasi-monochromacy of optical signals, the higher temporal derivatives ∂n/∂Tn for n ≥ 3

in Eq. (A.33) can be neglected if β
(2)
0 6= 0, i. e., if f0 does not lie in the vicinity of a zero-dispersion

wavelength of the waveguide,

∂A(T, z)

∂z
= j

β
(2)
0

2

∂2A(T, z)

∂T 2
− j γ |A(T, z)|2A(T, z)− α

2
A(T, z). (A.34)

In the case of zero linear attenuation α = 0, Eq. (A.34) resembles the well-known Schrödinger equation
of quantum mechanics with a nonlinear (quadratic) potential term. Thus, it is called the nonlinear
Schrödinger equation9,10 (NLSE). If during the propagation of a light signal its loss is continuously
compensated by gain, then the power loss constant can be set actually to zero, α = 0. For including
random perturbations by, e. g., ASE noise of optical amplifiers, a random field11 − jNASE(T, z) can be
added on the right-hand side of Eq. (A.34).

9See Sect. 2.3.1 Eq. (2.3.27) Page 43 in reference Footnote 17 on Page 6
10Boyd, R. W: Nonlinear optics. 3. Ed. San Diego: Academic Press 2008. Section 7.5.2, Eq. (7.5.32)
11R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel: Capacity limits of optical fiber networks. J. Lightw.

Technol. 28 (2010) 662–701



182 APPENDIX A. LINEAR AND NONLINEAR FIBRE PROPERTIES



Appendix B

Sampling, quantizing and discrete
Fourier transform

For digital signal processing, real-world continuous signals must be discretized, i. e., the signals have to be
sampled with respect to time and frequency, and their amplitudes have to be quantized. As a consequence,
the continuous Fourier transform, which is involved in signal analysis very often, has to be replaced by
the discrete Fourier transform, or, equivalently, by the numerically more efficient fast Fourier transform.

Physically it is not possible to sample or to quantize a signal in infinitely small, δ-sized intervalls.
Instead, we integrate the signal over a periodically repeated window called a “bin”. Sometimes the bins
are small enough to approximate an ideal δ-sampling, but especially in quantizing amplitudes the bins
have a non-negligible width. The following sections treat a few aspects in this context. Finally, we discuss
some properties of the discrete Fourier transform.

B.1 Sampling with a finite temporal bin size

In Sect. 2.1.1 on Page 13 ff. we discussed the case of ideal sampling with δ (t)-functions in time. According
to Eq. (2.1) we found that a complex signal Ψ(t) with a spectrum Ψ̆(f) that is limited to a bandwidth
B can be reconstructed from samples Ψ(iTs) (i = 0,±1,±2, . . .), if Ts = 1/Fs ≤ 1/B holds, i. e., if the
sampling frequency Fs is as large as or larger than the signal’s bandwidth B.

In a more practical case the signal Ψ(t) is first integrated in a finite temporal window (a “bin”) with
a width of Ts, thus forming the moving average

Ψ (b)(t) =
1

Ts

∫ t+Ts/2

t−Ts/2
Ψ(t1) dt1 . (B.1)

This averaged signal is then sampled. The procedure is equivalent to sampling with a window of finite
width Ts. Here we choose a bin width identical to the sampling interval Ts, but a smaller size would be

also possible. For this so-called “bin-sampled” function Ψ
(b)
s (t) and its spectrum Ψ̆

(b)
s (f) we find

Ψ (b)
s (t) =

1

Ts

∫ t+Ts/2

t−Ts/2
Ψ(t1) dt1 Ts

+∞∑
i=−∞

δ (t− iTs) =
1

Ts

∫ +∞

−∞
Ψ(t1) rect

( t− t1
Ts

)
dt1 Ts

+∞∑
i=−∞

δ (t− iTs)

=

(
Ψ (t) ∗ 1

Ts
rect

( t

Ts

))
(t) Ts

+∞∑
i=−∞

δ (t− iTs) , (B.2a)

Ψ̆ (b)
s (f) =

(
Ψ̆(f) sinc

( f
Fs

))
∗

+∞∑
i=−∞

δ
(
f − iFs

)
=

+∞∑
i=−∞

Ψ̆
(
f − iFs

)
sinc

(f − iFs
Fs

)
. (B.2b)
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The spectrum Ψ̆
(b)
s (f) of the bin-sampled function Ψ

(b)
s (t) differs from the spectrum Ψ̆s(f) in Eq. (2.1) of

a δ-sampled signal Ψs(t) by the weighing function sinc (f/Fs − i).
If for a real1 signal Ψ(t) the sampling theorem is fulfilled, i. e., if Ts ≤ 1/(2B) or Fs ≥ 2B holds, then

the central partial spectrum Ψ̆(f) sinc (f/Fs) with i = 0, which vanishes for |f | > B, is not superimposed
by neigbouring image spectra with i 6= 0 (aliasing does not occur), and a baseband filter with bandwidth
B reconstructs the original moving-average signal,

Ψ (b)(t) =

∫ +∞

−∞
Ψ̆(f) sinc

( f
Fs

)
e j 2πft df =

(
Ψ (t) ∗ 1

Ts
rect

( t

Ts

))
(t) =

1

Ts

∫ t+Ts/2

t−Ts/2
Ψ(t1) dt1 . (B.3)

B.2 Quantizing with an analogue-to-digital converter

Sampling with a finite temporal bin size, i. e., quantizing in time, and quantizing of other physical quan-
tities like voltages are described with the same formalism. An essential characteristic of an analogue-
to-digital converter (ADC) is the error introduced by the quantizing process. Closely connected to this
so-called quantization noise is the effective number of bits (ENOB), which we can attribute to an ADC.
Before we enter the discussion of quantization noise and ENOB, we need to summarize a few elements
of probability theory. If you are not interested in these subtleties, or if you are familiar with the topic,
you can just jump to Sect. B.2.2 on Page 187, where we discuss how a functional dependence y = f(x) of
an output quantity y on an input x changes the statistics of x. The characteristics of an ADC are then
detailed on Page 189 ff.

B.2.1 Elements of probability theory

Random variables

A random variable (RV, German Zufallsvariable) is a number x(ξ), which is associated with a certain
result (outcome) ξ of an experiment, i. e., it is associated with a certain elementary event2,3,4. This
number x(ξ) could be the price in a game of chance, or the momentary electrical voltage of a noisy
resistor. For instance, if a randomly thrown die shows the six (outcome ξ = 6), then let the winning
be x(6) = 1.50e. However, it would be also possible to associate with the outcome ξ = 6 meaning
“the face with six dots lies on top”, for instance the number 17. If a certain noise voltage ξ = 10µV is
measured (outcome), the associated number could be x(ξ = 10µV) = 1; naturally, we could also agree
on x(ξ) = ξ = 10µV.

In general, the following statement holds: A random variable is a function x(ξ), the independent
variable ξ of which belongs to a set (German Menge), which is named the domain X of the function,
and which is defined by the experiment. Conversely, the set of values x(ξ) belonging to ξ is termed the
image (or range, German Bereich) of the function. According to the usual interpretation of the theory
of functions, the symbol x(ξ) denotes the number (value) associated with the outcome ξ. Ignoring the
existence of complex numbers for the moment, the domain of cos ξ is the set of all real numbers ξ ∈ R,
while its image is the set of real numbers |cos ξ| ≤ 1.

Random variables are preferably written with boldface5 symbols x, while the values of random vari-
ables in sums and integrals are denoted by non-bold symbols x. Sometimes these conventions are not
practicable, and therefore ignored in these cases.

1“Real” understood as opposed to “complex”
2Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. Berlin: VEB Deutscher Verlag der Wissenschaften

1989. Chapter 2 Sect. 2.1 Page 47
3Papoulis, A.: Probability, random variables, and stochastic processes. 3rd Ed. New York: McGraw-Hill 1991. Chapter 4

Sect. 4.1 Page 63
4Jondral, F.; Wiesler, A.: Wahrscheinlichkeitsrechnung und stochastische Prozesse, 2nd Ed. Stuttgart: B. G. Teubner-

Verlag 2002. Sect. 4.1 Page 38
5See Chapter 4 Sect. 4.1 Page 64 in Ref. 3 on Page 184
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Stochastic process A stochastic process x(t, ξ) represents a family of random variables, where the
parameter t is interpreted as a continuous quantity that mostly stands for time. For each fixed ti the
quantity x := x(ti, ξ) is a random variable. For a a fixed ξj the quantity x(t) := x(t, ξj) is named a
random function (German Zufallsfunktion, Musterfunktion, Realisierung, Pfad des Prozesses).

An example: The electrical noise voltages x(ti, ξ1), x(ti, ξ2), . . ., x(ti, ξj), . . . of an ensemble of equal
resistors R1, R2, Rj , . . . at the same temperature at a fixed time ti define the range of the random variable
x := x(ti, ξ), while the time-dependent noise voltage x = x(t, ξj) of a certain resistor Rj represents a
random function xj(t) := x(t, ξj).

Discrete random variables, probability, moments

For a random variable x we take N measurements. Each of the Nn observations result in a value xn
(
∑
nNn = N). The probability for the result xn is the (empirical) limit of the relative frequency (German

Häufigkeit),

px(xn) = lim
N→∞

Nn
N
,

∑
n

px(xn) = 1 . (B.4)

In general, we denote as the mth moment of the discrete random variable x the expression

xm = E(xm) =
∑
n

xmn px(xn) . (B.5)

The expectation x = E(x) is called a first moment, while the variance σ2
x is the second central moment

(standard deviation σx; also named effective fluctuation),

x = E(x) =
∑
n xnpx(xn),

σ2
x =

(
x− x

)2
= E [(x− E(x))2] =

∑
n

(
xn − x

)2
px(xn) = δx2.

(B.6)

The random quantity δx = x − x is called fluctuation, because its expectation is zero, δx = 0. The
variance σ2

x is also named mean squared fluctuation. Central mth momente are calculated following the

definition
(
x− x

)m
.

From N observations of the RV x,y we measure (Nkl)-times the pair xk, yl, where
∑
k,lNkl = N

holds. From there we find the joint probability

pxy(xk, yl) = lim
N→∞

Nkl

N
,

∑
k

∑
l

pxy(xk, yl) = 1 . (B.7)

The probabilities px(xk) and py(yl) are calculated by summing over all l and k. Besides the expectations

x,y and the variances σ2
x, σ

2
y, the covariance is especially important,(

x− x
)(

y − y
)

=
∑
k

∑
l

(
xk − x

)(
yl − y

)
pxy(xk, yl) = xy − x y . (B.8)

The covariance disappears when the random variables x, y are uncorrelated. If pxy(xk, yl) = px(xk) py(yl)
holds, then the RV are statistically independent and therefore by necessity uncorrelated. However, it is
not possible to conclude from a zero covariance that the underlying random variables are statistically
independent. The covariance coefficient

ρxy =

(
x− x

)(
y − y

)
σxσy

(B.9)

is zero, if x and y are uncorrelated. If x and y are statistically dependent, y = kx, we find ρxy ± 1
according to the sign of k.
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Continuous random variables, probability density function, moments

The relations for discrete random variables can be transferred to continues variables, where the sums
have to be replaced by integrals. The functions wx(x), wy(y) are denoted as probability density functions
(PDF), and p(x ≤ x ≤ x+ dx) = wx(x) dx is the probability that we observe for the RV x values in the
differential interval x ≤ x ≤ x+ dx. The probability that x takes any value x is therefore 1,

p(−∞ < x < +∞) =

∫ +∞

−∞
wx(x) dx = 1 . (B.10)

In general, the mth moment of a continuous random variable x is expressed by

xm = E(xm) =

∫ +∞

−∞
xmwx(x) dx . (B.11)

As before, we calculate the mth central moments according to the definition
(
x− x

)m
.

Further, we define the joint probability density wxy(x, y) for the simultaneous observation of x = x and
y = y. The conditional probability density function wx(x|y) is the probability density for an observation
of x = x given that y = y was already measured,

wxy(x, y) = wx(x|y)wy(y) = wy(y|x)wx(x),

∫ +∞

−∞
wx(x|y) dx =

∫ +∞

−∞
wy(y|x) dy = 1 . (B.12)

For statistically independent RV x and y, the conditional probability densities are

wy(y|x) = wy(y),

wx(x|y) = wx(x),
i. e., wxy(x, y) = wx(x)wy(y) , xy =

∫ +∞

−∞
wxy(x, y) dx = x y . (B.13)

From Eq. (B.13), Eq. (B.8) it follows again that statistical independence implies zero correlation. We
denote the inverse of the function f(x) by

y = f(x), inverse function x = f−1(y) . (B.14)

For statistically dependent RV x,y we then find the conditional probability densities

wy(y|x) = δ
[
y − f(x)

]
, wx(x|y) = δ

[
x− f−1(y)

]
. (B.15)

Characteristic function and moments

The characteristic function (CF) of a random variable x with value x is defined as the expectation

Cx (ξ) = e− j 2πξx =

∫ +∞

−∞
wx(x) e− j 2πξx dx , |Cx (ξ)| ≤ Cx (0) = 1 . (B.16)

The function is maximum at ξ = 0 because for a PDF the relation wx(x) ≥ 0 holds. Both, CF and PDF,
are a Fourier pair. In this context the quantity ξ does not represent an event as in Sect. B.2.1 on Page 184,
but rather the Fourier variable ξ corresponding to the value x of the RV x.

The CF is useful if the PDF wz(z) of a sum z = x + y of statistically independent RV x and y has
to be calculated. Instead of computing the convolution

wz(z) =

∫ +∞

−∞
wx(x)wy(z − x) dx = (wx(x) ∗ wy(x)) (z) , (B.17)

the CF Cz (ζ) can be calculated simply by multiplying the CF Cx (ζ) and Cy (ζ) , and by performing a
Fourier back-transform,

Cz(ζ) = Cx(ζ)Cy(ζ), wz(z) =

∫ +∞

−∞
Cz(ζ) e+ j 2πζx dz . (B.18)

Taking the mth derivative of the CF Cx (ξ) at ξ = 0 results in the mth moment of the RV x,

xm =
1

(− j 2π)
m

dmCx (ξ)

dξm

∣∣∣∣
ξ=0

=
1

(− j 2πa)
m

dmCx (aξ)

dξm

∣∣∣∣
ξ=0

=

∫ +∞

−∞
xmwx(x) dx (B.19)
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B.2.2 Transformation of random variables

Consider the probability density function wx(x) of the random variable x. We define another random
variable y by the memoryless strictly monotonic function y = f(x), and we look for the transformed
probability density function wy(y). The transforming function f is assumed to be continuously differen-
tiable having the derivative f ′(x) = df/dx, see Fig. B.1(a). Obviously, the probability p that the RV y
has an outcome y in an interval y . . . y + d y (d y > 0) is

wy(y) d y = p(y ≤ y ≤ y + d y) = p(x1 ≤ x ≤ x1 + dx1)+ (B.20)

+ p(x2 + dx2 ≤ x ≤ x2) + p(x31 ≤ x ≤ x3 + dx3)

Inside the strictly monotonic partial intervals of a non-monotonic function f(x) as displayed in Fig. B.1(a)
we find the probabilities

p(x1 ≤ x ≤ x1 + dx1) = wx(x1) dx1 , dx1 = d y/f ′(x1) ,

p(x2 + dx2 ≤ x ≤ x2) = wx(x2) |dx2| , dx2 = d y/f ′(x2) ,

p(x3 ≤ x ≤ x3 + dx3) = wx(x3) dx3 , dx3 = d y/f ′(x3) ,

(B.21)

leading to the result

wy(y) d y =

(
wx(x1)

f ′(x1)
+
wx(x2)

|f ′(x2)|
+
wx(x3)

f ′(x3)

)
d y . (B.22)

In general we find: If xn = xn(y) (n = 1, 2, . . .) are the real roots of the equation y = f(x), then the
probability density function of the transformed random variable y is

wy(y) =
∑
n

wx(xn)

|f ′(xn)|
for f(xn) = y and f ′(x) =

df

dx
. (B.23)

As an example, we discuss the transformation of random variables for two nonlinear functions, which
model two types of rectifiers (detectors).

Linear envelope detector

The memory-less linear envelope detector is defined by the straight-line characteristic (H(x) is the Heavi-
side function, see Table 1.3 on Page 9)

y = f(x) = xH(x) =

{
x for x ≥ 0 ,
0 for x < 0 ,

f ′(x) = xδ(x) +H(x) = H(x) . (B.24)

(a) Strictly monotonic transformation function f(x) (b) Quantizer characteristic

Fig. B.1. Transformation of probability density function wx(x) for a random variable x by a memory-less function y = f(x)
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All x ≤ 0 lead to y = 0. All x ≥ 0 are mapped to values y = x. For y < 0, both the PDF wy(y < 0) = 0
and the probability distribution wy(y < 0) =

∫ y
−∞ wy(y1) d y1 = 0 are zero. For y > 0 the function

y = xH(x) has only one solution x3 = y, therefore:

wy(y) = 0 py(y) = 0 for y < 0

wy(y) = wx(y) py(y) = px(y) for y > 0
(B.25)

Obvioulsy, the probability distribution py(y) is discontinuous at y = 0. The total probability must be

normalized to 1, py(y < ∞) =
∫ +∞
−∞ wy(y1) d y1 =

∫∞
0
wy(y1) d y1 = 1. Therefore, and because of the

continuity of wx(y) at y = 0 and the discontinuity of wy(y) at y = 0 we find:

1 =

∞∫
0

wy(y) d y =

y < 0︷ ︸︸ ︷
0−∫
−∞

wy(y) d y+

y > 0︷ ︸︸ ︷
+∞∫
0+

wy(y) d y+

y= 0︷ ︸︸ ︷
0+∫

0−

wy(y) d y

1 =

∞∫
0

wy(y) d y =

0−∫
−∞

0 · d y

︸ ︷︷ ︸
0

+

+∞∫
0+

wx(y) d y

︸ ︷︷ ︸
1− px(0)

+

0+∫
0−

wy(y) d y

︸ ︷︷ ︸
py(0+)− py(0−)

!
=wx(0)

=

∞∫
0

wx(y) d y + px(0) =

∞∫
0

wx(y) d y + 2

+∞∫
0

δ(y) px(0) d y

From equal integrals we can conclude that the integrands are also identical if the transformation is unique.
Therefore the PDF is a symbolic function:

wy(y) = wx(y) + 2δ(y) px(0) = wx(y) + 2δ(y)

0∫
−∞

wx(x) dx , y ≥ 0 (B.26)

If specifically a Gaussian PDF is chosen for the RV x,

wx(x) =
1√

2πσ2
x

exp

(
− x2

2σ2
x

)
, (B.27)

the transformed probability density function and the expectation for x are

wy(y) = δ(y) +
1√

2πσ2
x

exp

(
− y2

2σ2
x

)
,

y =

∞∫
0

y ·

[
δ(y) +

1√
2πσ2

x

exp

(
− y2

2σ2
x

)]
d y =

σx√
2π
, y ≥ 0.

(B.28)

Quadratic rectifier

The quadratic rectifier is defined by its parabolic characteristic y = x2. With Eq. (B.23) we calculate

wx(−x) + wx(x) = wy(y) · 2x, f ′(x) = 2x, x1,2 = ±√y ,

wy(y) =
wx
(
+
√
y
)

+ wx
(
−√y

)
2
√
y

.
(B.29)

If again a Gaussian PDF is with expectation x = 0 is chosen, Eq. (B.27), we end up with

wy(y) =
1√

2πyσ2
x

exp

[
− y

2σ2
x

]
, y ≥ 0 . (B.30)



B.2. QUANTIZING WITH AN ANALOGUE-TO-DIGITAL CONVERTER 189

Analogue-to-digital converter

An analogue-to-digital converter (ADC) quantizes an analogue input signal x and transforms it into a
quantized output6 according to the memory-less function y = af(x), see Fig. B.1(b) on Page 187. Because
of the non-monotonic nature of the quantizer characteristic, Eq. (B.23) on Page 187 cannot be applied
directly, and the calulation follows the strategy developed for the linear envelope detector in Sect. B.2.2
on Page 187 ff.

Probability density function and moments In the following, we refer frequently to the relations
in Table 1.3 on Page 9 without further mentioning. First we note that only discrete output values y are
admitted. They are related to the input values x by a gain factor a and by the quantization interval
q > 0, which describes the range of x-values leading to a certain y,

y = a

{
kq for kq − q/2 < x < kq + q/2
0 else

, k = 0,±1,±2, . . . (B.31)

The probability of finding the RV y in an infinitesimally small intervall ±ε around yk = akq is pyk and
equals the probability px that x takes on values in the finite intervall kq − q/2 < x < kq + q/2,

pyk (akq − ε < y < akq + ε) =

∫ akq+ε

akq−ε
wyk (y1) dy1

= px (kq − q/2 < x < kq + q/2) =

∫ kq+q/2

kq−q/2
wx (x1) dx1. (B.32)

From the definition of the Dirac function in Table 1.3 on Page 9,
∫ +∞
−∞ δ (t)Ψ (t) dt =

∫ +ε

−ε δ (t)Ψ (t) dt =
Ψ (0), it can be seen that the probability density function wyk(y) for output level yk can be written as

wyk(y) = δ (y − akq) px (y/a− q/2 < x < y/a+ q/2) = δ (y − akq)
∫ y/a+q/2

y/a−q/2
wx (x1) dx1 . (B.33)

The probability of finding any output signal value y is py (−∞ < y < +∞) =
∑+∞
k=−∞ pyk , and therefore

wy(y) = px (y/a− q/2 < x < y/a+ q/2)

+∞∑
k=−∞

δ (y − akq)

=

∫ y/a+q/2

y/a−q/2
wx (x1) dx1

+∞∑
k=−∞

δ (y − akq) . (B.34)

It can be easily verified that py (−∞ < y < +∞) = 1 holds true,

py (−∞ < y < +∞) =

∫ +∞

−∞
wy(y1) dy1 =

∫ +∞

−∞
dy1

∫ y1/a+q/2

y1/a−q/2
wx (x1) dx1

+∞∑
k=−∞

δ (y1 − akq)

=

+∞∑
k=−∞

∫ akq/a+q/2

akq/a−q/2
wx (x1) dx1 =

∫ +∞

−∞
wx (x1) dx1 = 1 . (B.35)

We now calulate the moments y and y2 at the ADC output in terms of scaled moments a x and a2 x2 at
the ADC input. For the expectation we find

y =

∫ +∞

−∞
y1 wy(y1) dy1 =

+∞∑
k=−∞

∫ +∞

−∞
y1 δ(y1 − akq) px (y1/a− q/2 < x < y1/a+ q/2) dy1

= a

+∞∑
k=−∞

kq px (kq − q/2 < x < kq + q/2) = a kq =
q→0

a x. (B.36a)

6Widrow, B.; Kollár, I.; Liu, M.-C.: Statistical theory of quantization. IEEE Trans. Instrum. Meas. 45 (1996) 353–361
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The second moment reads

y2 =

∫ +∞

−∞
y2

1 wy(y1) dy1 =

+∞∑
k=−∞

∫ +∞

−∞
y2

1 δ(y1 − akq) px (y1/a− q/2 < x < y1/a+ q/2) dy1

= a2
+∞∑

k=−∞

(kq)
2
px (kq − q/2 < x < kq + q/2) = a2 (kq)

2
=
q→0

a2 x2. (B.36b)

Only for an infinitely small quantization q → 0 such that kq → x, the moments y and y2 at the ADC
output reproduce the scaled moments ax and a2 x2 at the ADC input. Otherwise, an error will occur.

As an example, consider the continuous RV x that is equally distributed in the intervall −
(
K + 1

2

)
q ≤

x <+
(
K + 1

2

)
q for K = 0, 1, 2, . . . The first moments are x,y = 0, and the second moment x2 is

wx(x) =
1

2
(
K + 1

2

)
q

rect
( x

2
(
K + 1

2

)
q

)
, x2 =

∫ +(K+ 1
2 )q

−(K+ 1
2 )q

x2 dx

2
(
K + 1

2

)
q

=
K2q2

3
+
Kq2

3
+
q2

12
. (B.37a)

Assume that the quantizer has 2K + 1 levels so that it spans the full range of the input PDF wx(x). The
resulting second moment7 of the quantized y is smaller than the scaled second moment of the input x,

y2 = 2a2q2
K∑
k=1

k2 q

2
(
K + 1

2

)
q

+a2q2
0∑
k=0

k2 q

2
(
K + 1

2

)
q

= a2
(K2q2

3
+
Kq2

3

)
= a2

(
x2− q

2

12

)
. (B.37b)

From the quantizer characteristic Fig. B.1(b) on Page 187 we see that for K = 0 the output RV y (and
all its moments) always assumes the value y = 0. Therefore, and for this specific PDF wx (x), the down-
scaled output power y2/a2 is always smaller than the input power x2. Further it is obvious that for
Kq = const and q → 0 , i. e., for very small and very many quantizing bins K → ∞, the down-scaled
second output moment equals the second input moment, y2/a2 = x2.

While for a given input PDF the correct second moments y2 and x2 can be calculated from Eq. (B.36),
it is useful to derive a more general statement by applying a constraint, which is at least approximately
valid in real-world problems. This will be done in the following.

Band-limited characteristic functions and moments Equation (B.34) on Page 189 resembles8,9

the temporal sampling as described in Eq. (2.1) on Page 13, and it is especially close to Eq. (B.2) on
Page 183: The probability density function wx(x) of the input signal is sampled at equidistant val-
ues x = y/a = qk. Each sampled δ-shaped partial function wyk(y) corresponds to the probability
px (qk − q/2 < x < qk + q/2) of finding the RV x in an interval qk − q/2 < x < qk + q/2.

To see this more clearly we calculate the characteristic function of wy(y) according to the definition
Eq. (B.16) on Page 186. As before, we refer frequently to the relations in Table 1.3 on Page 9 without men-
tioning. Further, the δ-comb transformations of Eq. (2.1) on Page 13 are used. First we write Eq. (B.34)
with the help of the symmetric rect-function rect (x/q) = rect (−x/q) in form of a convolution, and then

7Gradstein, I.; Ryshik, I.: Summen-, Produkt- und Integral-Tafeln, 5th Russian Ed., 1st German-English Ed. Volume 1
and 2. Thun: Harri Deutsch 1981. Formula 0.121.2.:

∑n
k=1 k

2 = n (n+ 1) (2n+ 1)/6
8See Ref. 6 on Page 189
9Kiencke, U.; Eger, R.: Messtechnik. Systemtheorie für Elektrotechniker. 6th Ed. Berlin: Springer 2005. Sect. 7.2.3

Page 263
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(a) Characteristic ADC output function
Cy (η) (——) with weighed CF Cx (η)
(. . . . . . ) of the continuous input signal x

(b) ADC representa-
tion and linear model
with random noise nq

(c) Probability density function
wnq (nq) of input quantization
noise nq

Fig. B.2. Analogue-to-digital converter (ADC). Characteristic function Cy (η) of the output y representing the quantized
continuous input signal x, linear ADC model with random noise nq , and probability density function of nq , equally dis-
tributed in −q/2 ≤ nq < +q/2. — If the quantizing theorem QT I of Eq. (B.39) is fulfilled, i. e., if the continuous input
signal x is “band-limited” such that Cx

(
|η| > 1/(2aq)

)
= 0 holds, adjacent “partial spectra” in (a) do not overlap, and

the PDF wx (x) of the continuous input signal can be reconstructed error-free by interpolation (or by “filtering” in the
“spectral” domain). — The real factor a describes the average slope of the analogue-to-digital converter, see Fig. B.1(b) on
Page 187. [Modified after Ref. 9 on Page 190, Fig. 7.16, 7.12, and 7.17]

perform the Fourier transform Cy (η) = F {wy (y)},

wy (y) =

∫ y/a+q/2

y/a−q/2
wx (x1) dx1

+∞∑
k=−∞

δ (y − akq) =

∫ +∞

−∞
wx (x1) rect

(y/a− x1

q

)
dx1

+∞∑
k=−∞

δ (y − akq)

=

(
wx (x) ∗ rect

(x
q

))(y
a

) +∞∑
k=−∞

δ (y − akq) , (B.38a)

Cy (η) = a
(
Cx (aη) q sinc (aqη)

)
∗ 1

aq

+∞∑
k=−∞

δ
(
η − k

aq

)
=

+∞∑
k=−∞

Cx

(
aη − k

q

)
sinc

(
q
(
aη − k

q

))
. (B.38b)

The CF Cy (η) of the quantized ADC output signal y in Fig. B.2(a) (solid line, ——) contains the CF
Cx (aη) of the continuous ADC input signal x (dotted line, . . . . . . ), weighed with the scaled Fourier
transform sinc (aqη) of the input bin size q. Because of the periodic “sampling” at positions x = kq, the
weighed input CF Cx (aη) is periodically repeated at integer multiples aη = 0,± 1

q ,±
2
q , . . . of the scaled

“sampling frequency” aηs = 1
q .

At these “frequencies”, one central sinc-function is maximum with a value of 1, while all adjacent
sinc-functions have the value 0, leading to Cy (0) = Cx (0) = 1. However, the slope of Cy (η) at η = 0,
which is responsible for the moments of y, does depend on neigbouring repetitions of the weighed input
CF. In this sense the schematic of the quantizer’s output signal CF Cy (η) in Fig. B.2(a) is equivalent to
Fig. 2.2(b) on Page 14.

The CF Cx (η) and the PDF px (x) of the continuous input signal can be uniquely recovered, if Cx (η)
is “band-limited” such that the quantizing theorem QT I holds10,

Cx
(
|η| > 1/(2aq)

)
= 0 . (B.39)

Under this condition, no overlap (“aliasing”) of adjacent periodically repeated input CF occurs. If
Eq. (B.39) is not fulfilled, because the ADC has too large a bin size q compared to the span of the
input signal x, an added auxiliary random signal with limited “bandwidth” acting as a “dither” spreads
the input over more quantization levels and helps in fulfilling Eq. (B.39) for the composite signal11. How-
ever, it has to be noted that real-world characteristic functions cannot be band-limited, because the span
of the input signal x as well as its PDF are limited (for an extreme example see Eq. (B.37a) on Page 190),
and the Fourier transform of a truncated PDF is always unlimited in η.

10See Ref. 6 on Page 189, Eq. (4)
11See Ref. 6 on Page 189, end of Sect. II
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If only moments as in Eq. (B.19) on Page 186 are of interest, it suffices to know the derivatives of the
CF at η = 0 only, and therefore the weaker quantizing theorem QT II has to be fulfilled12 for avoiding
“moment aliasing”, as can be immediately verified by inspecting Fig. B.2(a),

Cx
(
|η| > 1/(aq)

)
= 0 . (B.40)

None of the random variables which occur in practice have a perfectly band-limited CF. However,
most of them are approximately band-limited, and a fine enough quantization q (large enough “sampling
frequency” ηs = 1

aq ) assures acceptable fulfillment of QT I or II as formulated in Eq. (B.39) and (B.40),

by allowing the input CF to be wide13.

B.2.3 Quantization noise

The quantized ADC output y cannot reproduce the input signal x perfectly, and there remains a deter-
ministic quantization error which can, under the conditon of QT II, be interpreted as uniformly distributed
quantization noise nq, statistically independent from x. An example of this deterministic error signal nq
is displayed as a blue curve in Fig. 2.3 (upper row, central subfigure) on Page 16.

We assume that QT II holds and start by computing the expectation y. We evaluate Eq. (B.38b) on
Page 191 for k = 0 with the help of Eq. (B.19) on Page 186,

y =
1

− j 2π

dCy (η, k = 0)

dη

∣∣∣∣
η=0

=

[
dCx (aη)

dη
sinc (aqη) + Cx (η)

πaqη cos (πaqη)− sin (πaqη)

πaqη2

]
η=0

=
1

− j 2π

dCx (aη)

dη

∣∣∣∣
η=0

= ax . (B.41a)

The quantized output y = ax is scaled but statistically unbiased14. Proceeding in an analogue fashion,
we calculate the second moment y2,

y2 =
1

(− j 2π)
2

d2Cy (η, k = 0)

dη2

∣∣∣∣
η=0

=
1

(− j 2π)
2

[
d2Cx (aη)

dη2
sinc (aqη) + 2

dCx (aη)

dη

πaqη cos (πaqη)− sin (πaqη)

πaqη2

+ Cx (aη)
[2− (πaqη)2] sin (πaqη)− 2πaqη cos (πaqη)

πaqη3

]
η=0

=
1

(− j 2π)
2

d2Cx (aη)

dη2

∣∣∣∣
η=0

+
(aq)

2

12
= a2 x2 + a2 q

2

12
= a2

(
x2 + n2

q

)
, n2

q =
q2

12
. (B.41b)

The result Eq. (B.41b) contradicts the second moment as calculated for a rectangular input PDF in
Eq. (B.37) on Page 190, because in this case the condition of QT II was severely violated.

Linear quantizer model

Provided that the quantizing theorem QT II Eq. (B.40) on Page B.40 holds, the moment y2 = a2
(
x2+n2

q

)
at the output of the physical ADC as depicted in the upper half of Fig. B.2(b) on Page 191 can be
interpreted as resulting from a linear superposition of two statistically independent RV x (input signal)
and nq (equivalent quantization noise at input with nq = 0), lower half of Fig. B.2(b) and Fig. 2.3 on
Page 16.

12See Ref. 6 on Page 189, Eq. (8)
13This sentence quoted after Ref. 6 on Page 189, Sect. VI, after Eq. (9)
14statistically unbiased: German erwartungstreu
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Assuming further a rectangular PDF for wnq (nq) as in Fig. B.2(c) and observing 2 x nq = 2 x nq = 0
for statistically independent RV (Eq. (B.13) on Page 186), we find

y = a (x + nq) , y2 = a2
(
x2 +n2

q

)
, wnq (nq) =

1

q
rect

(nq
q

)
, n2

q =
1

q

∫ +q/2

−q/2
n2
q dnq =

q2

12
. (B.42a)

Signal and noise variances at input and output of the ADC are

σ2
x =

(
x− x

)2
= x2 − x

2
, σ2

y = a2
(
x + nq − x

)2
= a2σ2

x + a2σ2
nq , σ2

nq =
q2

12
. (B.42b)

Equations (B.41) establish for the ADC a linear signal and noise model as shown in the lower half of Fig.
B.2(b). We are now in a position to calculate the signal-to-noise power ratio (SNRq) and the effective
number of bits (ENOB).

Signal-to-noise power ratio

The signal-to-noise power ratio SNRq of an ADC is defined as the ratio of signal power PS and noise
power PN . For definiteness, we assume an input sinusoidal x = x̂ cos (ω0t+ ϕ), the full range 2x̂ of which
is quantized with an ADC having M = 2r � 1 levels corresponding to an ADC with r bit, therefore
2x̂ = Mq. The signal power is PS = σ2

x = 1
2 x̂

2, and the noise power amounts to PR = σ2
nq = q2/12 from

Eq. (B.41). For SNRq and its logarithmic equivalent SNRq,dB = 10 lg SNRb we then find

SNR( sin )
q =

PS
PR

=
σ2
x

σ2
nq

=
1
2

1
4 22rq2

1
12 q

2
=

3

2
22r for M = 2r � 1, SNR

( sin )
q,dB = 6.02 r+ 1.76 . (B.43)

Effective number of bits

Given the signal power PS of a sinusoidal and the noise power PR corresponding to the quantizing error,

the appropriate number of bits r can be extracted from SNR
( sin )
q,dB in Eq. (B.43),

r =
SNR

( sin )
q,dB

6.02
− 0.293 , re = ENOB =

SNDRq,dB

6.02
− 0.293 . (B.44)

For arbitrary sources of noise, nonlinear distortion and timing jitter, characterized by a general logarithmic
signal-to-noise and distortion power ratio SNDRq,dB = 10 lg (PS/PR) = 20 lg (σx/σn), this relation can
be generalized15 to define the effective number of bits re = ENOB. The factor of 6.02 = 20 lg 2 reflects the
notion that to improve ENOB by 1 bit, either the full-scale swing of the input signal x must be increased
by a factor of 2, or the effective distortion and noise σn must be reduced by a factor of 2.

Usually, the ENOB decreases for wide-bandwidth signals, e. g., for an ADC with 40 GSa/s and 6 bit
we find a reduction16 from ENOB = 5.5 for a full-scale sinusoidal at f0 = 0.5 GHz to ENOB = 4 for a
sinusoidal at f0 = 18 GHz.

B.3 The discrete Fourier transform

The discrete Fourier transform can be axiomatically defined, but it also approximates the continuous
Fourier transform

Ψ(t) =

∫ +∞

−∞
Ψ̆(f) e+ j 2πft df , Ψ̆(f) =

∫ +∞

−∞
Ψ(t) e− j 2πft dt . (B.45)

15See Ref. 6 on Page 15, Eq. (3)
16Laperle, C.; O’Sullivan, M.: High-speed DACs and ADCs for next generation flexible transceivers. Proc. Advanced

Photonics for Communications (APC’14), San Diego (CA), USA, July 13–17, 2014. Paper SM3E.1



194 APPENDIX B. SAMPLING, QUANTIZING AND DISCRETE FOURIER TRANSFORM

To see this we must discretize time t and frequency f , and we have to impose a limitation on the maximum
time and frequency values which are admitted. According to Eq. (2.1) on Page 13 we assume a sampling
interval Ts and a maximum band-limiting frequency Fs, beyond which the spectrum Ψ̆(f) is zero. It is
convenient to choose the number of samples N to be a power of two,

t = nTs , f = ν
Fs
N
, Ts =

1

Fs
, n, ν = 0, 1, 2, . . . , N−1 , N = 2r, r = 2, 3, 4, . . . (B.46a)

Combining Eq. (B.46a) and (B.45), we find the approximations

Ψ(nTs) ≈
Fs
N

N/2−1∑
ν=−N/2

Ψ̆(νFs/N) e+ j 2π νnN , Ψ̆(νFs/N) ≈ Ts
N/2−1∑
n=−N/2

Ψ(nTs) e− j 2π νnN , (B.46b)

which become the better, the larger N and the smaller Ts are. The axiomatic definition of the discrete
N -point Fourier transform c̆ν (DFT) and its inverse cn (IDFT),

cn =

N/2−1∑
ν=−N/2

c̆ν e+ j 2π nνN ≈ Ψ(nTs) , c̆ν =
1

N

N/2−1∑
n=−N/2

cn e− j 2π nνN ≈ Fs
N
Ψ̆(νFs/N) , (B.46c)

relates the approximations Eq. (B.46b) to the IDFT and DFT Eq. (B.46c). In numerical routines, a
different DFT definition is frequently used (coefficients Cn, C̆ν), which can be translated to Eq. (B.46c)
with the shift theorem of Fourier theory,

Cn =

N−1∑
ν=0

C̆ν e+ j 2π nνN = cn−N/2 e jπn, C̆ν =
1

N

N−1∑
n=0

Cn e− j 2π nνN = c̆ν−N/2 e− jπν . (B.47)

Because the DFT operates on sampled data, the spectrum c̆ν repeats periodically, see Eq. (2.1) and Fig.
2.2(b) on Page 13. In addition, the data length cn is finite (implicitly meaning a periodic repetition in
contrast to assuming zero data outside the interval −N/2 ≤ n ≤ +N/2 − 1), therefore the spectrum is
discrete. As a consequence of the periodicities in time and frequency domain, the following coefficients are
identical and are therefore excluded from the sums: c+N/2 ≡ c−N/2, c̆+N/2 ≡ c̆−N/2, CN ≡ C0, C̆N ≡ C̆0.

B.3.1 Pareseval’s theorem

For a better understanding of the physical meaning of the DFT coefficients, a look at Parseval’s17 identity
is useful. With the help of the orthogonality relation for infinitely extended harmonic functions it states
that the total energy in time and frequency domain must be equal,∫ +∞

−∞
|Ψ(t) |2 dt =

∫ +∞

−∞
|Ψ̆(f) |2 df , lim

k→∞

∫ +k

−k
e± j 2πf(t−t′) df = δ (t− t′) . (B.48a)

Applying Parseval’ theorem to Eq. (B.46b), and with the help of an orthogonality relation for time-limited
harmonic functions we find (Kronecker symbol δnn′ , Eq. (12) in Table 1.3 on Page 9)

Ts

N/2−1∑
n=−N/2

|Ψ(nTs) |2 =
Fs
N

N/2−1∑
ν=−N/2

|Ψ(νFs/N) |2, 1

N

N/2−1∑
ν=−N/2

e± j 2π
ν(n−n′)

N = δnn′ . (B.48b)

Parseval’s theorem for the DFT definitions Eq. (B.46c) or (B.47), however, reads

N/2−1∑
n=−N/2

|cn|2 = N

N/2−1∑
ν=−N/2

|c̆ν |2 or

N−1∑
n=0

|Cn|2 = N

N−1∑
ν=0

|C̆ν |2. (B.48c)

17Marc-Antoine Parseval des Chênes, ? 1755, † 1836. A French mathematician best known for his theorem in Fourier
analysis.
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The weighing factor N in Eq. (B.48c) comes from the different normalizations for unlimited harmonics,
Eq. (B.48a), and for time-limited harmonics, Eq. (B.48b).

From Eq. (B.48a) we conclude that the power |Ψ(nTs) |2 in a time slot Ts and the spectral power
|Ψ(νFs/N) |2(Fs/N)2 in a resolution bandwidth Fs/n can be approximated by

|Ψ(nTs) |2 ≈ |cn|2, |Ψ(νFs/N) |2(Fs/N)2 = |c̆ν |2. (B.49)

B.3.2 Zero padding and interpolation

As we have seen in Sect. 2.1.1 and Eq. (2.2) on Page 14, the reconstruction of Nyquist-sampled data
limited to a maximum spectral frequency Fs requires an ideal rectangular (and therefore non-causal)
filter with infinitely steep slopes, a so-called “brick wall” filter. Obviously, such a filter is not realizable
in practice.

For relaxing the filter requirements, the sampling frequency has to be increased. This so-called up-
sampling is most easily done by “in-between zero padding” (zero padding, German Nullpolsterung):
Between every two original time samples, a number of w − 1 samples with zero values are inserted. This

increases the sampling rate to F
(w)
s = wFs, thereby creating a spectral gap of (w − 1)Fs, which then

accomodates also finite, physically realizable filter slopes.
Naturally, the sampled signal itself must not be changed by this in-between zero padding. Indeed,

the spectral information up to Fs, i. e., the Fourier coefficients c̆ν for −N/2 ≤ ν ≤ +N/2 − 1, remain
unchanged, but additional spurious coefficients c̆ν are created in the “spectral gap” intervals −wN/2 ≤
ν < −N/2 and N/2 ≤ ν < wN/2−1. However, implicit in applying the DFT is the assumption of a band
limited complex signal (no spectral components beyond f = Fs), and therefore the spurious coefficients
c̆ν due to the in-between zero padding can be ignored, i. e., set to zero. This again is called zero padding
and could have been done also in the first place.

An IDFT operating on the adjusted, zero-padded c̆ν then creates a set of coefficients c ′n with interpo-
lated values in-between the original samples. These interpolated coefficients replace the primarily inserted
zeros. Had we not inserted zeros during the in-between zero padding process, but had we chosen any other
arbitrary values, then the Fourier coefficients c̆ν for −N/2 ≤ ν ≤ +N/2− 1 would have changed !

Quite often this leads to a some confusion. We therefore discriminate between “in-between zero
padding” and “end zero padding”, which both can be done either in the time domain or in the fre-
quency domain. In-between zero padding in one domain corresponds to up-sampling the available data,
and in the other domain it adds irrelevant data at both ends of the transformed available data. End zero
padding in one domain interpolates the data in the other domain, thus performing an up-sampling, too.

The following examples illustrate both processes. Because operations involving zeros need not be
executed, these techniques are computationally very efficient in digital signal processing (DSP).

In-between zero padding in the time domain (up-sampling)

Consider Eq. (B.46c) in a notation, where we introduce complex so-called “twiddle factors” W νn
N , which

in fact represent a square matrix (W νn
N ),

cn =

N/2−1∑
ν=−N/2

W νn
N c̆ν , c̆ν =

N/2−1∑
n=−N/2

W νn ∗
N cn , W νn

N = e j 2π νn
N , W νn ∗

N = e− j 2π νnN . (B.50)

For the case N = 4, these twiddle factors are ±1 and e± jπ/2, and we find the relations

c̆ν =

1∑
n=−2

W νn ∗
4 cn ,

c̆−2 = c−2 − c−1 + c0 − c1
c̆−1 = −c−2 + e− jπ 1

2 c−1 + c0 + e+ jπ 1
2 c1

c̆0 = c−2 + c−1 + c0 + c1
c̆1 = −c−2 + e+ jπ 1

2 c−1 + c0 + e− jπ 1
2 c1

. (B.51)

Now let us insert one zero (w = 2) after every other time-domain sample cn. This doubles the number of
new coefficients c ′n to wN = 8, halves the sampling interval to Ts/w, and doubles the sampling rate to
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wFs, but leaves the frequency step size wFS/(wN) = Fs/N unchanged. For avoiding too abstract sum

formulae, we write the following results in full, where (· · · )T denotes the transpose of a row matrix, i. e.,
it represents a colum matrix,

c̆ν =

3∑
n=−4

W νn ∗
8 c ′n ,

(
c̆−4 c̆−3 c̆−2 c̆−1 c̆0 c̆1 c̆2 c̆3

)T
= (W νn ∗

8 )
(
c−2 0 c−1 0 c0 0 c1 0

)T
. (B.52a)

After performing the matrix multiplication, we end up with a set of equations for w = 2, wN = 8:

w
=

2,
w
N

=
8



c̆−4 = c−2 + c−1 + c0 + c1
c̆−3 = −c−2 + e− jπ 3

2 c−1 + c0 + e+ jπ 3
2 c1

c̆−2 = c−2 − c−1 + c0 − c1
c̆−1 = −c−2 + e− jπ 1

2 c−1 + c0 + e+ jπ 1
2 c1

c̆0 = c−2 + c−1 + c0 + c1
c̆1 = −c−2 + e+ jπ 1

2 c−1 + c0 + e− jπ 1
2 c1

c̆2 = c−2 + c−1 + c0 + c1
c̆3 = −c−2 + e+ jπ 3

2 c−1 + c0 + e− jπ 3
2 c1

N
=

4


c̆−2 = c−2 − c−1 + c0 − c1
c̆−1 = −c−2 + e− jπ 1

2 c−1 + c0 + e+ jπ 1
2 c1

c̆0 = c−2 + c−1 + c0 + c1
c̆1 = −c−2 + e+ jπ 1

2 c−1 + c0 + e− jπ 1
2 c1

(B.52b)

For an easy comparison, we duplicate here Eq. (B.51) for N = 4. Because every wth coefficient c ′n is set

to zero, the original spectral coefficients
(
c̆−2 c̆−1 c̆0 c̆1

)T
remain unchanged, but spurious coefficients

c̆−4, c̆−3 and c̆2, c̆3 are generated. If the stop band of a subsequent digital filter suppresses these spurious
coefficients sufficiently, the effect is an end zero padding in the frequency domain.

End zero padding in the frequency domain (interpolation)

Due to the primary assumption of a bandlimited signal, we know that any Fourier coefficient subscripted
with −wN/2 ≤ ν < −N/2 and N/2 ≤ ν < wN/2 − 1 must be zero, so we modify these coefficients c̆ν
Eq. (B.52b) with end zero padding and write the IDFT

c ′n =

3∑
ν=−4

W νn
8 c̆ν ,

(
c ′−4 c

′
−3 c

′
−2 c

′
−1 c

′
0 c
′
1 c
′
2 c
′
3

)
= (W νn

8 )
(

0 0 c̆−2 c̆−1 c̆0 c̆1 0 0
)T
. (B.53a)

In performing the matrix multiplication, the first and the last column pair of the twiddle factor ma-

trix (W νn
8 ) can be disregarded, so only the Fourier coefficients

(
c̆−2 c̆−1 c̆0 c̆1

)T
of the original signal(

c−2 c−1 c0 c1
)T

come into play, and the result for w = 2, wN = 8 is:

w
=

2,
w
N

=
8



c ′−4 = c̆−2 − c̆−1 + c̆0 − c̆1
c ′−3 = e+ jπ 6

4 c̆−2 + e− jπ 3
4 c̆−1 + c̆0 + e− jπ 3

4 c̆1
c ′−2 = −c̆−2 + c̆−1 + c̆0 + e− jπ 2

4 c̆1
c ′−1 = − e+ jπ 2

4 c̆−2 + c̆−1 + c̆0 + e− jπ 1
4 c̆1

c ′0 = c̆−2 + c̆−1 + c̆0 + c̆1
c ′1 = e− jπ 2

4 c̆−2 + e− jπ 1
4 c̆−1 + c̆0 + e+ jπ 1

4 c̆1
c ′2 = −c̆−2 + e− jπ 2

4 c̆−1 + c̆0 + e+ jπ 2
4 c̆1

c ′3 = e− jπ 6
4 c̆−2 + e− jπ 3

4 c̆−1 + c̆0 + e+ jπ 3
4 c̆1

N
=

4



c−2 = c̆−2 − c̆−1 + c̆0 − c̆1

c−1 = −c̆−2 + c̆−1 + c̆0 + e− jπ 1
2 c̆1

c0 = c̆−2 + c̆−1 + c̆0 + c̆1

c1 = −c̆−2 + e− jπ 1
2 c̆−1 + c̆0 + e+ jπ 1

2 c̆1

(B.53b)

For a better comparison, we also specify in Eq. (B.53b) the IDFT as calculated from the unmodified

Fourier coefficients
(
c̆−2 c̆−1 c̆0 c̆1

)T
for N = 4. It is obvious that the original coefficients cn are recovered,

and that in c ′n interpolated coefficients are to be found. They do not represent any new information,
because these intermediate values could have been also inferred from the sinc-interpolated continuous
data according to Eq. (2.3) on Page 15. However, end zero padding in the frequency domain with a
subsequent IDFT is numerically much simpler than any sinc-interpolation.



Appendix C

Coherent signal and noise

C.1 Signal representation

We seek expressions for the detector current of a square-law detected (rectified) coherent signal that is
embedded in narrowband noise. To this end, the following signal representation is especially useful.

C.1.1 Narrowband noise

Noise in a narrow bandwidth B � f0 centred at frequency f0 is described as a sum of sinusoidals1,2,

s(t) =

+N∑
n=−N

an cos [(ω0 + n∆ω) t+ ϕn] , 1
2a

2
n = ws(f0 + n∆f)∆f. (C.1)

The phases ϕn are independent random variables, which are equally distributed in an interval 0 ≤ ϕn <
2π. With cos (x± y) = cosx cos y ∓ sinx sin ywe find

s(t) = x(t) cos(ω0t)− y(t) sin(ω0t) = r(t) cos [ω0t+ ϕ(t)] (C.2)

with the abbreviations

x(t) =
∑
n

an cos(n∆ωt+ ϕn), r(t) = [x2(t) + y2(t)]1/2,

y(t) =
∑
n

an sin(n∆ωt+ ϕn), ϕ(t) = arctan
y(t)

x(t)
.

(C.3)

Applying the central limit theorem3 for sufficiently large N , the quantities x(t), y(t) are independent
Gaussian random variables with variances

1

2

∑
n

a2
n = σ2

x = σ2
y = σ2, x = y = 0, xy = 0. (C.4)

For narrowband noise, the quantities r and ϕ can be interpreted as slowly varying amplitude and slowly
varying phase, respectively.

If Θs(f) denotes the two-sided power spectrum of s(t), we find the low-frequency part of the two-sided
power spectra of x(t) and y(t) through shifting Θs(f) by ±f0, where we regard only the low-frequency
contributions in the vicinity of f = 0, see Fig. C.1,

Θx(f) = Θy(f) = Θs(f − f0)|at f = 0 +Θs(f + f0)|at f = 0. (C.5)

The two-sided power spectrum Θx(f) = Θx(−f) is real and symmetric, because the covariance of real ran-

1See Ref. 10 on Page 122. Eq. (1.7-1)
2Rice, S. O.: Mathematical analysis of random noise. Bell Syst. Techn. J. 24 (1945) 46–156. Eq. (2.8-1), (3.7-2)
3See Ref. 10 on Page 122. Sect. 2.10

197
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Fig. C.1. Two-sided power spectra Θs (f), Θx (f), Θy (f) and one-sided power spectra ws (f), wx (f), wy (f) of narrowband
noise

dom variables x is real and symmetric, Kx (τ) = Kx (−τ) (equals the auto-correlation function ϑx (τ) for
ergodic processes). Covariance or auto-correlation function and power spectrum form a Fourier pair. This
famous theorem from 1930 is named after Wiener4 and Khintchine5,

Kx(τ) = x(t) x(t− τ) =

+∞∫
−∞

Θx(f) e j 2πfτ df , (C.6)

ϑx(τ) = 〈x(t) x(t− τ)〉 = Kx (τ) (for ergodic x), (C.7)

ϑx(0) = Kx(0) = P = x2 =

+∞∫
−∞

Θx(f) df =

+∞∫
0

2Θx(f) d f =

∞∫
0

wx(f) df. (C.8)

The one-sided (real) power spectrum wx(f) according to Eq. (C.8) is defined by

wx(f) =

{
0 for f < 0 ,
2Θx(f) for f > 0 .

(C.9)

Any one-sided power P0 at f = 0 is described by the term 2P0δ(f), because an integral over half of the
symmetric Dirac function results in 1

2 , and 2
∫∞

0
δ (f) df = 1.

We now specialize to the case of “white” noise with a constant spectral power density w0 inside the

4Norbert Wiener, American mathematician, ?Columbia (Missouri) † 26.11.1894, Stockholm 18.3.1964. Since 1932 pro-
fessor in Cambridge (Massachusetts), numerous research visits in Europa, China, India, Mexico. Wiener formulated some of
the most important contributions to mathematics in the 20th century. During the 1920s Wiener did highly innovative and
fundamental work on what are now called stochastic processes and, in particular, on the theory of Brownian motion and
on generalized harmonic analysis, as well as significant work on other problems of mathematical analysis. During World
War II Wiener worked on the problem of aiming gunfire at a moving target. The ideas that evolved led to “Extrapolation,
Interpolation, and Smoothing of Stationary Time Series” (1949), which first appeared as a classified report and established
Wiener as a codiscoverer, with the Russian mathematician Andrey Kolmogorov, of the theory on the prediction of station-
ary time series. It introduced certain statistical methods into control and communications engineering and exerted great
influence in these areas. This work also led him to formulate the concept of cybernetics.

5Chintschin, A. J.: Korrelationstheorie der stationären stochastischen Prozesse. Math. Annalen 109 (1934) 604 — Alek-
sandr Yakovlevich Khinchin (pronounced ["xIntSIn], in Western Europe also transcribed by “Chintschin” or “Chinčin”),
Russian mathematician and statistician, ?Kondrowo (region Kaluga) 19.7.1894, †Moskow 18.11.1959. Worked on proba-
bility theory and its applications. Published several important works on statistical physics, where he used the methods of
probability theory, and on information theory, queuing theory and mathematical analysis.
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bandwidth B. The power density outside disappears. The average noise power from Eq. (C.1)–(C.5) is

P = s2(t) = 1
2

∑
n a

2
n =

f0+B/2∫
f0−B/2

ws(f) df =
f0+B/2∫
f0−B/2

w0 df

= 1
2 r

2(t) = 1
2 x

2(t) + 1
2 y

2(t) = x2(t) = y2(t)

= σ2
x = σ2

y = σ2 =
B/2∫
0

wx(f) df =
B/2∫
0

wy(f) df = w0B .

(C.10)

C.1.2 Signal and narrowband noise

We consider a coherent signal with frequency f0 and constant amplitude A, which is embedded in nar-
rowband noise. The resulting signal s (t) is represented by

s(t) = [A+ x(t)] cos(ω0t)− y(t) sin(ω0t) = z(t) cos(ω0t)− y(t) sin(ω0t)

= r(t) cos[ω0t+ ϕ(t)],

z(t) = A+ x(t), z = A,

r(t) =
√
z2(t) + y2(t), σ2

z = σ2
x = σ2

y = σ2 = Bw0, xy = 0 .

(C.11)

The one-sided power spectrum is shown in Fig. C.2(a) on Page 201.

C.2 Quadratic detection of signal and narrowband noise

We follow the derivation by Rice6 and consider a signal comprising a coherent carrier in a certain po-
larization with narrowband noise in the same polarization as defined in Eq. (C.11). The one-sided power
spectrum is displayed in Fig. C.2 on Page 201. A quadratic rectifier (detector) generates a current in
proportion to s2(t). The low-frequency part of the detector current is denoted by i(t). It is calculated
by averaging over a carrier period. The direct current (DC) part is i(t). With cosx sinx = 1

2 sin 2x,

cos2 x = 1
2 (1 + cos 2x), sin2 x = 1

2 (1− cos 2x) we find

i(t) =
1

2

[
A2 + 2Ax(t) + x2(t) + y2(t)

]
, i(t) =

1

2

[
A2 + x2 + y2

]
=

1

2
A2 + σ2. (C.12)

C.2.1 Auto-correlation function of detector current

For determining the low-frequency power spectrum Θi(f) of the current i (t), we first calculate its co-
variance Ki(τ) = i(t) i(t− τ) (= auto-correlation function ϑi (τ), ACF). In the following, we abbreviate
x := x(t) and xτ := x(t− τ), and proceed similarly for other relevant time functions. The noise process
is assumed to be stationary and ergodic. Expectations of odd powers of x and y vanish because their
probability density functions are symmetric Gaussians with x = 0, y = 0. We find

i(t) i(t− τ) = i iτ = 1
4 (A2 + 2Ax+ x2 + y2)(A2 + 2Axτ + x2

τ + y2
τ )

= 1
4 (A4 + 2A3xτ +A2x2

τ +A2y2
τ )

+ 1
4 (2A3x+ 4A2xxτ + 2Axx2

τ + 2Axy2
τ )

+ 1
4 (A2x2 + 2Ax2xτ + x2x2

τ + x2y2
τ )

+ 1
4 (A2y2 + 2Axτy2 + x2

τy
2 + y2y2

τ )

= 1
4 (A4 +A2x2 +A2x2) + 1

4 (4A2xxτ )

+ 1
4 (A2x2 + x2x2

τ + x2 x2
τ ) + 1

4 (A2x2 + x2
τ x

2 + x2x2
τ )

= 1
4

[
A4 + 4A2x2 + 4A2 xxτ︸︷︷︸+2

(
x2
)2

+ 2x2x2
τ︸ ︷︷ ︸ ].

(C.13)

6See Ref. 2 on Page 197. Sect. 4.5 Noise through square law device
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The terms xxτ and x2x2
τ need to be evaluated in the following.

Term xxτ The two-sided power spectrum Θx(f = ±f0) in Fig. C.1 on Page 198 has a height of w0/2.
For the low-frequency spectra near f = 0 we therefore require a height of w0/2 +w0/2 = w0, because the
power must be conserved. The auto-correlation xxτ reads

xxτ = ϑx(τ) =

+B/2∫
−B/2

Θx(f)︸ ︷︷ ︸
w0(f)

e j 2πfτ df =

+B/2∫
−B/2

w0 e j 2πfτ df =
w0

πτ
sin(πBτ) = w0B

sin(πBτ)

πBτ
,

(C.14)

x2 = σ2 = w0B.

This results in an expression for the normalized auto-correlation function,

ρ =
xxτ

x2
=

sin(πBτ)

(πBτ)
. (C.15)

Term x2x2
τ For calculating x2x2

τ we separate xτ in one part that is correlated with x, and in another
contribution z that is statistically independent from x,

xτ = ρx+ z, xnzm = xn zm. (C.16)

From Eq. (C.16) and (C.15) we find

z2 = (xτ − ρx)2 = x2
τ − 2ρ xxτ︸︷︷︸

=ρx2

+ρ2x2 = x2 − 2ρ2x2 + ρ2x2 = x2(1− ρ2), (C.17)

which leads together with an expression for the moments7 of a Gaussian, especially for x4, to the required
result for the term x2x2

τ ,

x2x2
τ = x2(ρx+ z)2 = ρ2x4 + 2ρx3 ×

0︷︸︸︷
z +

stat. indep.︷︸︸︷
x2z2 = ρ2x4 + x2 z2

= ρ2x4 + (x2)2(1− ρ2) = ρ2 ×
[
1× 3× (x2)2

]
+ (x2)2(1− ρ2)

= 2ρ2(x2)2 + (x2)2 = 2ρ2σ4 + σ4

(C.20)

Substitution of terms The expressions Eq. (C.15) and (C.20),

xxτ = ρx2 = ρσ2 and x2x2
τ = 2ρ2(x2)2 + (x2)2 = 2ρ2σ4 + σ4,

are substituted in Eq. (C.13),

i(t) i(t− τ) =
1

4

[
A4 + 4A2x2 + 4A2 xxτ︸︷︷︸+2

σ4︷ ︸︸ ︷(
x2
)2

+2x2x2
τ︸ ︷︷ ︸ ],

and with Eq. (C.14) and (C.15) the covariance reads

Ki(τ) = i(t) i(t− τ) =
(

1
2A

2 + σ2
)2

+A2ρσ2 + ρ2σ4

=
(1

2
A2 + w0B

)2
+A2w0B

sin(πBτ)

(πBτ)
+ w2

0B
2 sin2(πBτ)

(πBτ)2
.

(C.21)

7Gaussian probability density function and its moments:

wx(x) =
1√

2πσ2
x

exp
[
−

(x− a)2

2σ2
x

]
, x = a, (x− x)2 = δx2 = σ2

x , (C.18)

For x = 0: x2n+1 = 0, x2n = (2n− 1)!!σ2n
x = 1 · 3 · 5 · . . . · (2n− 1)σ2n

x . (C.19)
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C.2.2 Power spectrum of detector current

From Eq. (C.21) and with the Wiener-Khintchine theorem Eq. (C.6) on Page 198 we compute the required
low-frequency detector current power spectrum,

Θi(f) =

+∞∫
−∞

Ki(τ) e− j 2πfτ dτ =
(1

2
A2 + w0B

)2
δ(f) + 2A2w0B

∞∫
0

sin(πBτ)

(πBτ)
cos(2πfτ) dτ

+ 2w2
0B

2

∞∫
0

sin2(πBτ)

(πBτ)2
cos(2πfτ) dτ . (C.22)

Having solved the integrals8 in Eq. (C.22), we find the one-sided power spectra wi(f) of a square-law
detector when demodulating a coherent carrier and noise. We follow the recipe Eq. (C.9) on Page 198,

wi(f) = 2
(

1
2A

2 + w0B
)2
δ(f)

+2w0A
2[H(f)−H(f −B/2)] + 2w2

0(B − f)[H(f)−H(f −B)].
(C.24)

The first term represents the rectified carrier and the rectified noise, Fig. C.2(b). The second term stems
from the low-frequency mixing products of polarized carrier and identically polarized noise “sidebands”

Fig. C.2. Quadratic rectification of a coherent carrier embedded in narrowband noise. (a) One-sided power spectrum
ws(f) of signal s(t) = [A+x(t)] cos(ω0t)−y(t) sin(ω0t) (b) One-sided direct current power spectrum with iS ∼ A2/2 and
iR ∼ w0B, total detector current power (iS + iR)2. The integral over half a Dirac function is

∫∞
0 δ (f) df = 1

2
. (c) Carrier-

noise interference (d) Noise-noise interference. — Partial detector spectra are uncorrelated and may be added. Therefore
the total power equals the sum of the partial powers.

(carrier-noise interference), Fig. C.2(c). The third term finally describes the low-frequency part of the
mixing of identically polarized noise “sidebands” among themselves (noise-noise interference), Fig. C.2(d).
These contributions to wi(f) are displayed in Fig. C.2(b)–(d).

If the superposition of a modulated carrier and narrowband noise in a bandwidth B comprises a
message with bandwidth B � B, this message will be veiled by the low-frequency noise-noise interference
2w2

0B, Fig. C.2(d). This has to be avoided by a proper filtering, because an optical amplifier has a
bandwidth of about B = 12 THz, see Eq. (3.61) on Page 76. For large coherent carriers the carrier-noise
interference 2w0A

2 dominates in the low-frequency part of the detector current spectrum wi(f), Fig.
C.2(c).

8Two definite integrals:

∞∫
0

sin(ax)

x
cos(bx) dx =

 π/2, a > |b|,
π/4, a = |b| > 0,
0, b > |a|,

∞∫
0

sin2(ax)

x2
cos(2bx) dx =

{ π
2

(|a| − |b|), |b| < |a|,
0, |b| > |a|. (C.23)
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